ÒÑÖªÊýÁÐ{an}ºÍ{bn}Âú×㣺a1=¦Ë£¬an+1=
23
an+n-4£¬bn=(-1)n(an-3n+21)
£¬
ÆäÖЦËΪʵÊý£¬nΪÕýÕûÊý£®
£¨1£©¶ÔÈÎÒâʵÊý¦Ë£¬Ö¤Ã÷£ºÊýÁÐ{an}²»ÊǵȱÈÊýÁУ»
£¨2£©Ö¤Ã÷£ºµ±¦Ë¡Ù18ʱ£¬ÊýÁР{bn} ÊǵȱÈÊýÁУ»
£¨3£©ÉèSnΪÊýÁР{bn} µÄÇ°nÏîºÍ£¬ÊÇ·ñ´æÔÚʵÊý¦Ë£¬Ê¹µÃ¶ÔÈÎÒâÕýÕûÊýn£¬¶¼ÓÐSn£¾-12£¿Èô´æÔÚ£¬Çó¦ËµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨1£©¼ÙÉè´æÔÚÒ»¸öʵÊý¦Ë£¬Ê¹{an}ÊǵȱÈÊýÁУ¬ÓÉÌâÒâÖª£¨
2
3
¦Ë-3
£©2=¦Ë(
4
9
¦Ë-4)?
4
9
¦Ë
2 -4¦Ë+9=
4
9
¦Ë2-4¦Ë?9=0
£¬Ã¬¶Ü£®ËùÒÔ{an}²»ÊǵȱÈÊýÁУ®
£¨2£©ÓÉÌâÉèÌõ¼þÖªb1=-£¨¦Ë+18£©¡Ù0£®bn¡Ù0£¬¡à
bn+1
bn
=-
2
3
(n¡ÊNn)
£¬¹Êµ±¦Ë¡Ù-18£¬Ê±£¬ÊýÁÐ{bn}ÊÇÒÔ-£¨¦Ë+18£©ÎªÊ×Ï-
2
3
Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ®
£¨3£©ÓÉÌâÉèÌõ¼þµÃ bn=-(¦Ë+18)•(-
2
3
)n-1
£¬Sn=-
3
5
(¦Ë+18)•[1-(-
2
3
)n]
£¬ÓÉ´ËÈëÊÖÄܹ»ÍƳö´æÔÚʵÊý¦Ë£¬Ê¹µÃ¶ÔÈÎÒâÕýÕûÊýn£¬¶¼ÓÐSn£¾-12£»¦ËµÄÈ¡Öµ·¶Î§Îª£¨-¡Þ£¬-6£©£®
½â´ð£º½â£º£¨1£©Ö¤Ã÷£º¼ÙÉè´æÔÚÒ»¸öʵÊý¦Ë£¬Ê¹{an}ÊǵȱÈÊýÁУ¬ÔòÓÐa22=a1a3£¬£¨2·Ö£©
¼´£¨
2
3
¦Ë-3
£©2=¦Ë(
4
9
¦Ë-4)?
4
9
¦Ë
2-4¦Ë+9=
4
9
¦Ë2-4¦Ë?9=0
£¬Ã¬¶Ü£®
ËùÒÔ{an}²»ÊǵȱÈÊýÁУ®£¨4·Ö£©
£¨2£©½â£ºÒòΪbn+1=£¨-1£©n+1[an+1-3£¨n+1£©+21]=£¨-1£©n+1£¨
2
3
an-2n+14£©
=-
2
3
£¨-1£©n•£¨an-3n+21£©=-
2
3
bn£¨7·Ö£©
µ±¦Ë¡Ù-18ʱ£¬b1=-£¨¦Ë+18£©¡Ù0£¬ÓÉÉÏ¿ÉÖªbn¡Ù0£¬¡à
ba+1
bn
=-
2
3
£¨n¡ÊN+£©£®£¨8·Ö£©
¹Êµ±¦Ë¡Ù-18ʱ£¬ÊýÁÐ{bn}ÊÇÒÔ-£¨¦Ë+18£©ÎªÊ×Ï-
2
3
Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¨9·Ö£©
£¨3£©µ±¦Ë=-18ʱ£¬bn=0£¬´Ó¶øSn=0£®³ÉÁ¢£®£¨10·Ö£©
µ±¦Ë¡Ù-18ʱ£¬ÓÉ£¨¢ò£©µÃbn=-(¦Ë+18)•(-
2
3
)n-1
£¬ÓÚÊÇSn=-
3
5
(¦Ë+18)•[1-(-
2
3
)n]
£¬£¨12·Ö£©
Ҫʹ¶ÔÈÎÒâÕýÕûÊýn£¬¶¼ÓÐSn£¾-12£®
¼´-
3
5
(¦Ë+18)•[1-(-
2
3
)n]£¾12?¦Ë
20
1-(-
2
3
)
n
-18
£®
Áîf(n)=1-(-
2
3
)n£¬Ôò

µ±nΪÕýÆæÊýʱ£¬1£¼f(n)¡Ü
5
3
£º

µ±nΪÕýżÊýʱ£¬
5
9
¡Üf(n)£¼1
£¬¡àf(n)µÄ×î´óֵΪf(1)=
5
3
£®£¨16·Ö£©
ÓÚÊǿɵæˣ¼20¡Á
3
5
-18=-6
£®
×ÛÉÏËùÊö£¬´æÔÚʵÊý¦Ë£¬Ê¹µÃ¶ÔÈÎÒâÕýÕûÊýn£¬¶¼ÓÐSn£¾-12£»¦ËµÄÈ¡Öµ·¶Î§Îª£¨-¡Þ£¬-6£©£®£¨18·Ö£©
µãÆÀ£º±¾Ì⿼²éÊýÁеÄ×ÛºÏÓ¦Ó㬽âÌâʱҪעÒ⹫ʽµÄÁé»îÔËÓ㮶ÔÓÚÖ¤Ã÷ÊýÁв»ÊǵȱÈÊýÁеÄÎÊÌâʵ¼ÊÉϲ»ºÃ±íÊö£¬ÎÒÃÇ¿ÉÒÔÑ¡Ôñ·´Ö¤·¨À´Ö¤Ã÷£¬¼ÙÉè´æÔÚÍƳöì¶Ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}ºÍ{bn}Âú×㣺a=1£¬a1=2£¬a2£¾0£¬bn=
a1an+1
(n¡ÊN*)
£®ÇÒ{bn}ÊÇÒÔ
aΪ¹«±ÈµÄµÈ±ÈÊýÁУ®
£¨¢ñ£©Ö¤Ã÷£ºaa+2=a1a2£»
£¨¢ò£©Èôa3n-1+2a2£¬Ö¤Ã÷ÊýÀý{cx}ÊǵȱÈÊýÀý£»
£¨¢ó£©ÇóºÍ£º
1
a1
+
1
a2
+
1
a3
+
1
a4
+
¡­+
1
a2n-1
+
1
a2n
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}ºÍ{bn}Âú×ãa1=m£¬an+1=¦Ëan+n£¬bn=an-
2n
3
+
4
9
£®
£¨1£©µ±m=1ʱ£¬ÇóÖ¤£º¶ÔÓÚÈÎÒâµÄʵÊý¦Ë£¬{an}Ò»¶¨²»ÊǵȲîÊýÁУ»
£¨2£©µ±¦Ë=-
1
2
ʱ£¬ÊÔÅжÏ{bn}ÊÇ·ñΪµÈ±ÈÊýÁУ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}ºÍµÈ±ÈÊýÁÐ{bn}Âú×㣺a1=b1=4£¬a2=b2=2£¬a3=1£¬ÇÒÊýÁÐ{an+1-an}ÊǵȲîÊýÁУ¬n¡ÊN*£¬
£¨¢ñ£©ÇóÊýÁÐ{an}ºÍ{bn}µÄͨÏʽ£»
£¨¢ò£©ÎÊÊÇ·ñ´æÔÚk¡ÊN*£¬Ê¹µÃak-bk¡Ê(
12
£¬3]
£¿Èô´æÔÚ£¬Çó³ökµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}ºÍ{bn}Âú×㣺a1=¦Ë£¬an+1=
23
an+n-4£¬bn=£¨-1£©n£¨an-3n+21£©ÆäÖЦËΪʵÊý£¬ÇҦˡÙ-18£¬nΪÕýÕûÊý£®
£¨¢ñ£©ÇóÖ¤£º{bn}ÊǵȱÈÊýÁУ»
£¨¢ò£©Éè0£¼a£¼b£¬SnΪÊýÁÐ{bn}µÄÇ°nÏîºÍ£®ÊÇ·ñ´æÔÚʵÊý¦Ë£¬Ê¹µÃ¶ÔÈÎÒâÕýÕûÊýn£¬¶¼ÓÐa£¼Sn£¼b£¿Èô´æÔÚ£¬Çó¦ËµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•Ð¢¸ÐÄ£Ä⣩ÒÑÖªÊýÁÐ{an}ºÍ{bn}Âú×ãa1=1ÇÒbn=1-2an£¬bn+1=
bn
1-4 
a
2
n
£®
£¨I£©Ö¤Ã÷£ºÊýÁÐ{
1
an
}ÊǵȲîÊýÁУ¬²¢ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Çóʹ²»µÈʽ(1+a1)(1+a2)¡­(1+an)¡Ýk
1
b2b3¡­bnbn+1 
¶ÔÈÎÒâÕýÕûÊýn¶¼³ÉÁ¢µÄ×î´óʵÊýk£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸