精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C过点M23,A为其左顶点,且AM的斜率为

1)求C的方程;

2)点N为椭圆上任意一点,求△AMN的面积的最大值.

【答案】(1);(212.

【解析】

(1)由题意分别求得a,b的值即可确定椭圆方程;

(2)首先利用几何关系找到三角形面积最大时点N的位置,然后联立直线方程与椭圆方程,结合判别式确定点N到直线AM的距离即可求得三角形面积的最大值.

(1)由题意可知直线AM的方程为:,即.

y=0时,解得,所以a=4

椭圆过点M(23),可得

解得b2=12.

所以C的方程:.

(2)设与直线AM平行的直线方程为:

如图所示,当直线与椭圆相切时,与AM距离比较远的直线与椭圆的切点为N,此时△AMN的面积取得最大值.

联立直线方程与椭圆方程

可得:

化简可得:

所以,即m2=64,解得m=±8

AM距离比较远的直线方程:

直线AM方程为:

N到直线AM的距离即两平行线之间的距离,

利用平行线之间的距离公式可得:

由两点之间距离公式可得.

所以△AMN的面积的最大值:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费和年销售量)数据作了初步处理,得到下面的散点图及一些统计量的值.

46.6

563

6.8

289.8

1.6

1.469

108.8

表中

1)根据散点图判断,哪一个适宜作为年销售量y关于年宣传费x的回归方类型?给出判断即可,不必说明理由

2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;

3)已知这种产品的年利润zxy的关系为根据(2)的结果回答下列问题:

①年宣传费时,年销售量及年利润的预报值是多少?

②年宣传费x为何值时,年利润的预报值最大?

附:对于一组数据,其回归线的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是直角梯形,,侧面底面,且为棱上一点,且

1)求证:平面

2)若二面角的余弦值为,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点,轴非负半轴为极轴建立极坐标系,已知直线的极坐标方程为,曲线的参数方程为为参数).

1)若直线平行于直线,且与曲线只有一个公共点,求直线的方程;

2)若直线与曲线交于两点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是(

A.62%B.56%

C.46%D.42%

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知极坐标系的极点在平面直角坐标系的原点处,极轴与轴的正半轴重合,且长度单位相同;曲线 的方程是,直线的参数方程为为参数,),设 直线与曲线交于 两点.

(1)当时,求的长度;

(2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,设曲线在点处的切线与圆相切.

1)求函数的单调区间;

2)求函数上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某种气垫船的最大航速是海里小时,船每小时使用的燃料费用和船速的平方成正比.若船速为海里小时,则船每小时的燃料费用为元,其余费用(不论船速为多少)都是每小时元。甲乙两地相距海里,船从甲地匀速航行到乙地.

(1)试把船从甲地到乙地所需的总费用,表示为船速(海里小时)的函数,并指出函数的定义域;

(2)当船速为每小时多少海里时,船从甲地到乙地所需的总费用最少?最少费用为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个不同零点),设函数的定义域为,且的最大值记为,最小值记为.

1)求(用表示);

2)当时,试问以为长度的线段能否组成一个三角形,如果不一定,进一步求出的取值范围,使它们能组成一个三角形;

3)求.

查看答案和解析>>

同步练习册答案