精英家教网 > 高中数学 > 题目详情
从甲、乙等10名同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法有
 
种(结果用数字表示).
分析:由题意,事件“甲、乙中至少有1人参加”的对立事件是“两人都不参加”,故本题在求解时可以用排除法,先求出10名同学中挑选4名参加某项公益活动的选法,再计算出甲乙两人都不参数的选法,总数中排除掉甲乙两人都不参数的选法,即可得事件“甲、乙中至少有1人参加”的种数
解答:解:10名同学中挑选4名参加某项公益活动,总的选法有C104=
10×9×8×7
4×3×2×1
=210种
甲乙两人都不参数的选法有C84=
8×7×6×5
4×3×2×1
=70种
故事件“甲、乙中至少有1人参加”包含的基本事件数是210-70=140
故答案为140
点评:本题考查排列组合及简单计数问题,解题的关键是理解事件“甲、乙中至少有1人参加”,将问题转化为求其对立事件包含的基本事件数,此技巧在计数问题在经常使用,适合于求所研究的事件分类较多,而其对立事件包含的类较少的情况,方便计数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、从甲、乙等10名同学中挑选4名参加某校公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有
140
种.

查看答案和解析>>

科目:高中数学 来源: 题型:

从甲、乙等10名同学中挑选4名参加某校公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有_______________种。

查看答案和解析>>

科目:高中数学 来源: 题型:

从甲、乙等10名同学中挑选4名参加某校公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有_______________种。

查看答案和解析>>

科目:高中数学 来源:2008年普通高等学校招生全国统一考试文科数学(四川卷) 题型:填空题

从甲、乙等10名同学中挑选4名参加某校公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有_______________种。

 

查看答案和解析>>

同步练习册答案