精英家教网 > 高中数学 > 题目详情
已知点M(-1,0),N(1,0),动点P(x,y)满足:|PM|•|PN|=
4
1+cos∠MPN

(1)求P的轨迹C的方程;
(2)是否存在过点N(1,0)的直线l与曲线C相交于A、B两点,并且曲线C存在点Q,使四边形OAQB为平行四边形?若存在,求出平行四边形OAQB的面积;若不存在,说明理由.
(1)设动点P(x,y),
∵点M(-1,0),N(1,0),动点P(x,y)满足:|PM|•|PN|=
4
1+cos∠MPN

(x+1)2+y2
(x-1)2+y2
=
4
1+
(x+1)(x-1)+y2
(x-1)2+y2
(x+1)2+y2

整理,得
x2
3
+
y2
2
=1

∴P的轨迹C的方程为
x2
3
+
y2
2
=1

(Ⅱ)设A(x1,y1)、B(x2,y2),
由题意知l的斜率一定不为0,∴设l:x=my+1,
代入椭圆方程整理得(2m2+3)y2+4my-4=0,
△=16m2+16(2m2+3)>0.
y1+y2=-
4m
2m2+3
y1y2=-
4
2m2+3
①,
假设存在点Q,使得四边形OAQB为平行四边形,
其充要条件为
OQ
=
OA
+
OB

则点P的坐标为(x1+x2,y1+y2).
由点Q在椭圆上,即
(x1+x2)2
3
+
(y1+y2)2
2
=1

整理得2x12+3y12+2x22+3y22+4x1x2+6y1y2=6
又A、B在椭圆上,即2x12+3y12=6,2x22+3y22=6
∴2x1x2+3y1y2=3…②
x1x2=(my1+1)(my2+1)=m2y1y2+m(y1+y2)+1代入,
由①②解得m=±
2
2

m=
2
2
时,解得y1=-
2
y2=
2
2

从而x1=0,x2=
3
2
∴A(0,-
2
),B(
3
2
2
2
)

OA
=(0,-
2
),
OB
=(
3
2
2
2
)

cos∠AOB=
OA
OB
|
OA
||
OB
|
=-
2
11
,sin∠AOB=
3
11
S平行四边形OAQB=|
OA
||
OB
|sin∠AOB=
3
2
2

同理当m=-
2
2
时,S平行四边形OAQB=
3
2
2

综上,存在满足条件的点P,使得四边形OAPB为平行四边形,
且该平行四边形的面积为
3
2
2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

若椭圆
x2
4
+
y2
a2
=1与双曲线
x2
a
-
y2
2
=1有相同的焦点,则a的值是(  )
A.1B.-1C.±1D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),经过点(3,-2)与向量(-1,1)平行的直线l交椭圆C于A,B两点,交x轴于M点,又
AM
=2
MB

(Ⅰ)求椭圆C长轴长的取值范围;
(Ⅱ)若|
AB
|=
3
2
2
,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知离心率为
6
3
的椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
与圆C:x2+(y-3)2=4交于A,B两点,且∠ACB=120°,C在AB上方,如图所示,
(1)求椭圆E的方程;
(2)是否存在过交点B,斜率存在且不为0的直线l,使得该直线截圆C和椭圆E所得的弦长相等?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:y2=x,直线l:y=k(x-1)+1,要使抛物线C上存在关于对称的两点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

一束光线从点(0,1)出发,经过直线x+y-2=0反射后,恰好与椭圆x2+
y2
2
=1
相切,则反射光线所在的直线方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦点为F1(-1,0),F2(1,0),且经过点P(1,
3
2
)

(Ⅰ)求椭圆C的方程;
(Ⅱ)设过F1的直线l与椭圆C交于A、B两点,问在椭圆C上是否存在一点M,使四边形AMBF2为平行四边形,若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:y=-x2+2x,在点A(0,0),B(2,0)分别作抛物线的切线L1、L2
(1)求切线L1和L2的方程;
(2)求抛物线C与切线L1和L2所围成的面积S.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,
ADB
为半圆,AB为半圆直径,O为半圆圆心,且OD⊥AB,Q为线段OD的中点,已知|AB|=4,曲线C过Q点,动点P在曲线C上运动且保持|PA|+|PB|的值不变.
(Ⅰ)建立适当的平面直角坐标系,求曲线C的方程;
(Ⅱ)过点B的直线l与曲线C交于M、N两点,与OD所在直线交于E点,若
EM
=λ1
MB
EN
=λ2
NB
,求证:λ1+λ2
为定值.

查看答案和解析>>

同步练习册答案