精英家教网 > 高中数学 > 题目详情
12.已知圆x2+y2=1,从这个圆上任意一点P向y轴作垂线段,求线段中点M的轨迹方程.

分析 写出点P所在圆的方程,设出M、P的坐标,由中点坐标公式把P的坐标用M的坐标表示,把P的坐标代入圆的方程后整理得线段PP′中点M的轨迹方程.

解答 解:点P向y轴作垂线段,设为PP′.
由题意可得已知圆的方程为x2+y2=1.
设点M的坐标为(x,y),点P的坐标为(x0,y0),
∵M是线段PP′的中点,
∴由中点坐标公式得2x=x0,y=y0
∵P(x0,y0)在圆x2+y2=1上,
∴(2x)2+y2=1①
即线段中点M的轨迹方程为4x2+y2=1.

点评 本题考查了轨迹方程的求法,训练了利用代入法求曲线方程,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若不等式x2-ay2≥(2+a)xy(x>0,y>0)恒成立,则实数a的最大值为2$\sqrt{3}$-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,正方体ABCD-A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则当CQ∈(0,$\frac{1}{2}$]∪{1}.时,S为四边形;当CQ=$\frac{1}{2}$时S为等腰梯形;当CQ=1时,S的面积为$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设a=(lg3)2,b=30.3,c=lg$\sqrt{3}$,则(  )
A.a<c<bB.c<a<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=ax2+$\frac{2}{x}$(a∈R)
(1)若函数f(x)为奇函数,求实数a的值;
(2)若f(1)=3,判断函数f(x)在区间[1,+∞)上的单调性,并用定义法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如果质点A按规律s=3t2运动,则在t=2时的瞬时速度是(  )
A.4B.6C.12D.24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合$A=\{x|x>0\},B=\{x|\frac{1}{2}<{2^x}<4\}$,则A∩∁RB=(  )
A.{x|x>0}B.{x|0<x<2}C.{x|x≥2}D.{x|x>2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已数列{an}满足a1=1,an+1-$\frac{1}{2}$an=$\frac{1}{{2}^{n}}$,bn=$\frac{1}{tan\frac{{a}_{n}}{{n}^{2}}}$•Sn是数列{bn}的前n项和.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证;对任意n∈N*.Sn<(n-1)•2n+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知sinθ=$\frac{m-3}{m+5}$,cosθ=$\frac{4-2m}{m+5}$($\frac{π}{2}$<θ<π),则tanθ=(  )
A.$-\frac{5}{12}$B.$\frac{5}{12}$C.$-\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

同步练习册答案