精英家教网 > 高中数学 > 题目详情
12.如图,在三棱锥P-ABC中,不能证明AP⊥BC的条件是(  )
A.AP⊥PB,AP⊥PCB.AP⊥PB,BC⊥PB
C.平面BPC⊥平面APC,BC⊥PCD.AP⊥平面PBC

分析 利用线面垂直的判定与性质,即可得出结论.

解答 解:对于A,AP⊥PB,AP⊥PC,PB∩PC=P,则AP⊥平面PBC,∴AP⊥BC,不合题意;
对于B,AP⊥PB,BC⊥PB,不能证明AP⊥BC,合题意;
对于C,平面BPC⊥平面APC,平面BPC∩平面APC=PC,BC⊥PC,∴BC⊥平面PAC,∴BC⊥AP,不合题意;
对于D,AP⊥平面PBC,∴AP⊥BC,不合题意;
故选:B.

点评 本题考查线面垂直的判定与性质,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知α是第四象限角tanα=-$\frac{5}{12}$,则cosα=(  )
A.$\frac{1}{5}$B.-$\frac{1}{5}$C.$\frac{12}{13}$D.-$\frac{12}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设f(x)可导,F(x)=f(x)(1+|sinx|),则f(0)=0是F(x)在x=0处可导的(  )
A.充分必要条件B.充分条件但非必要条件
C.必要条件但非充分条件D.既非充分条件又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知ab=$\frac{1}{4}$,a,b∈(0,1),则$\frac{1}{1-a}$+$\frac{2}{1-b}$的最小值为4+$\frac{4\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.定义在R上的函数y=f(x)关于y轴对称,且在[0,+∞)上是增加的,则下列关系成立的是(  )
A.f(3)<f(-4)<f(-π)B.f(-π)<f(-4)<f(3)C.f(-4)<f(-π)<f(3)D.f(3)<f(-π)<f(-4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知向量$\overrightarrow{m}$=(cosx,sinx)和$\overrightarrow{n}$=($\sqrt{2}$-sinx,cosx).
(1)设f(x)=$\overrightarrow{m}$,$\overrightarrow{n}$,求函数y=f($\frac{π}{3}$-2x)的最小正周期和对称轴方程;
(2)若x∈[π,2π],求|$\overrightarrow{m}$-$\overrightarrow{n}$|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.执行如图所示的程序框图.若输出的S=$\frac{1023}{512}$,则判断框内的条件可以为(  )
A.i<10?B.i≤10?C.i<11?D.i≤11?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知lg2=a,lg3=b,则lg1.8=a+2b-1(用a,b表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知x1、x2是函数f(x)=x2+mx+t的两个零点,其中常数m、t∈Z,记$\sum_{i=0}^n{x^i}={x^0}+{x^1}+…+{x^n}$,设${T_n}=\sum_{r=0}^n{x_1^{n-r}x_2^r}$(n∈N*).
(1)用m、t表示T1、T2
(2)求证:T5=-mT4-tT3
(3)求证:对任意的n∈N*,Tn∈Z.

查看答案和解析>>

同步练习册答案