精英家教网 > 高中数学 > 题目详情
8.命题“?x∈R,x2+2x+3>0”的否定是?x0∈R,x02+2x0+3≤0.

分析 利用全称命题的否定是特称命题,直接写出命题的否定即可.

解答 解:因为全称命题的否定是特称命题,所以命题p:?x∈R,x2+2x+3>0,则¬p是:?x0∈R,x02+x0+3≤0.
故答案为:?x0∈R,x02+2x0+3≤0

点评 本题考查命题的否定,全称命题与特称命题的否定关系,注意量词的变化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知单位圆内有一封闭图形,现向单位圆内随机撒N颗黄豆,恰有n颗落在该封闭图形内,则该封闭图形的面积估计值为$\frac{nπ}{N}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.观察如图数,设1027是该数表第m行的第n个数,则m+n=13.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=lg(x2-2mx+m+2),若该函数的定义域为R,则实数m的取值范围是(-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(α)=$\frac{sin(π-α)cos(π+α)}{cos(2π-α)tan(π-α)}$
(1)求f(-$\frac{31π}{3}$);
(2)若2f(π+α)=f($\frac{π}{2}$+α),求$\frac{sinα+cosα}{sinα-cosα}$+cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,在热气球C正前方有一高为m的建筑物AB,在建筑物底部A测得C的仰角为60°,同时在C处测得建筑物顶部B的仰角为30°,则此时热气球的高度CD为(  )
A.$\sqrt{2}m$B.$\sqrt{3}m$C.$\frac{{3\sqrt{3}}}{2}m$D.$\frac{3}{2}m$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设Sn是数列{an}的前n项和,已知${a_1}≠0,3{a_n}-{a_1}={S_1}{S_n},n∈{N^*}$.
(1)求a1,并求数列{an}的通项公式;
(2)求数列$\left\{{\frac{{n{a_n}}}{2}}\right\}$的前项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系中,直线l的参数方程为$\left\{\begin{array}{l}x=2+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数);现以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=8cosθ.
(1)写出直线l的普通方程和曲线C的直角坐标方程;
(2)过点P(-1,0)且与直线l平行的直线l1交C于A,B两点;
①求|AB|的值;
②求|PA|+|PB|的值;
③若线段AB的中点为Q,求|PQ|的值及点Q的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.要得到函数$y=3sin(2x+\frac{π}{3})$图象,只需要将函数$y=3cos(2x-\frac{π}{3})$的图象(  )
A.向左平移$\frac{π}{12}$个单位B.向右平移$\frac{π}{12}$个单位
C.向左平移$\frac{π}{6}$个单位D.向右平移$\frac{π}{6}$个单位

查看答案和解析>>

同步练习册答案