精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
-x-1(-1≤x<0)
-x+1(0<x≤1)
,则f(x)-f(-x)>-1的解集为
[-1,-
1
2
)∪﹙0,1]
[-1,-
1
2
)∪﹙0,1]
分析:由已知中函数的解析式为分段函数,故可分当-1≤x<0时和0<x≤1时两种情况,结合函数的解析式,将不等式f(x)-f(-x)>-1具体化,最后综合讨论结果,可得答案.
解答:解:当-1≤x<0时,则:0<-x≤1
f(x)=-x-1,f(-x)=-(-x)+1=x+1
f(x)-f(-x)>-1,
即:-2x-2>-1,
得:x<-
1
2

又因为:-1≤x<0
所以:-1≤x<-
1
2

当0<x≤1时,则:-1≤-x<0
此时:f(x)=-x+1,f(-x)=-(-x)-1=x-1
f(x)-f(-x)>-1,
即:-2x+2>-1,
得:x<3/2
又因为:0<x≤1
所以:0<x≤1
综上,原不等式的解集为:[-1,-
1
2
)∪(0,1]
故答案为:[-1,-
1
2
)∪(0,1]
点评:本题考查的知识点是分段函数,不等式的解法,其中利用分类讨论思想根据函数解析式将抽象不等式具体化是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案