精英家教网 > 高中数学 > 题目详情
(2012•道里区三模)选修4-5:不等式选讲
设不等式|2x-1|<1的解集为M,且a∈M,b∈M.
(Ⅰ) 试比较ab+1与a+b的大小;
(Ⅱ) 设maxA表示数集A中的最大数,且h=max{
2
a
a+b
ab
2
b
}
,求h的范围.
分析:(1)先解不等式得出其解集M,再利用作差法比较大小即可;
(2)不妨设0<a≤b<1,先找出其最大值,进而即可求出其范围.
解答:解:由不等式|2x-1|<1化为-1<2x-1<1解得0<x<1,
∴原不等式的解集M={x|0<x<1},
(Ⅰ)∵a,b∈M,∴0<a<1,0<b<1.
∴(ab+1)-(a+b)=(1-a)(1-b)>0,
∴ab+1>a+b.
(Ⅱ)∵a,b∈M,∴0<a<1,0<b<1.
不妨设0<a≤b<1,则
1
a
1
b
,∴
2
a
2
b

a+b
ab
=
a
b
+
b
a
1
b
+
1
a
2
a

2
a
最大,即h=
2
a
>2.
∴h∈(2,+∞).
点评:熟练掌握绝对值不等式的解法、作差法比较数的大小及不等式的基本性质是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•道里区三模)如图,四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.
(Ⅰ)求证:平面AEC⊥平面PDB;
(Ⅱ)当PD=
2
AB
,且直线AE与平面PBD成角为45°时,确定点E的位置,即求出
PE
EB
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•道里区三模)在△ABC中,角A、B、C所对的边分别为a、b、c,且acosB-bcosA=
1
2
c
,当tan(A-B)取最大值时,角C的值为
π
2
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•道里区三模)如图,设D是图中边长分别为1和2的矩形区域,E是D内位于函数y=
1
x
(x>0)图象下方的区域(阴影部分),从D内随机取一个点M,则点M取自E内的概率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•道里区三模)已知函数f(x)=
kx+1,x≤0
lnx,x>0
,则下列关于函数y=f[f(x)]+1的零点个数的判断正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•道里区三模)已知复数z1=1-
3
i
z2=2
3
-2i
,则
.
z1
.
z2
等于(  )

查看答案和解析>>

同步练习册答案