精英家教网 > 高中数学 > 题目详情

【题目】某城市交通部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照分成5组,制成如图所示频率分直方图.

1)求图中x的值;

2)求这组数据的平均数和中位数;

3)已知满意度评分值在内的男生数与女生数3:2,若在满意度评分值为的人中随机抽取2人进行座谈,求2人均为男生的概率.

【答案】10.022)平均数77,中位数3.

【解析】

1)由频率分布直方图的性质列方程能求出x

2)由频率分布直方图能求出这组数据的平均数和中位数.

3)满意度评分值在[5060)内有5人,其中男生3人,女生2人,记“满意度评分值为[5060)的人中随机抽取2人进行座谈,2人均为男生”为事件A,利用古典概型能求出2人均为男生的概率.

1)由,解得.

2)这组数据的平均数为.中位数设为m,则,解得.

3)满意度评分值在内有人,

其中男生3人,女生2.记为

记“满意度评分值为的人中随机抽取2人进行座谈,2人均为男生”为事件A

则总基本事件个数为 10个,A包含的基本事件个数为 3个,

利用古典概型概率公式可知.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】近期,某市公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用表示活动推出的天数, 表示每天使用扫码支付的人次(单位:十人次),统计数据如表1所示:

根据以上数据,绘制了散点图.

(1)根据散点图判断,在推广期内, (均为大于零的常数)哪一个适宜作为扫码支付的人次关于活动推出天数的回归方程类型?(给出判断即可,不必说明理由);

(2)根据(1)的判断结果及表1中的数据,建立关于的回归方程,并预测活动推出第8天使用扫码支付的人次;

(3)推广期结束后,车队对乘客的支付方式进行统计,结果如下

已知该线路公交车票价为2元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受8折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客中有的概率享受折优惠,有的概率享受8折优惠,有的概率享受9折优惠.根据所给数据以事件发生的频率作为相应事件发生的概率,试估计从20名乘客从中随机抽取1人,恰好享受8折优惠的概率 .

参考数据:

66

1.54

2711

50.12

3.47

其中,

参考公式:

对于一组数据 ,其回归直线的斜率和截距的最小二乘估计公式分别为: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆锥的顶点为S,底面圆O的两条直径分别为,且,若平面平面,以下四个结论中正确的是( )

A.平面

B.

C.E是底面圆周上的动点,则的最大面积等于的面积

D.l与平面所成的角为45°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆轴相切于点,与轴正半轴交于两点的上方),且.

1)求圆的标准方程;

2)过点作任一条直线与圆相交于两点.

①求证:为定值,并求出这个定值;

②求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C过点 ,两个焦点

(1)求椭圆C的标准方程;

(2)设直线l交椭圆C于A,B两点,且|AB|=6,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)已知点AB的坐标分别为(30),(-30),直线APBP相交于点P,且它们的斜率之积是-2,求动点P的轨迹方程.

2)设Pxy),直线l1x+y=0l2x-y=0.若点Pl1的距离与点Pl2的距离之积为2,求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆的直角坐标方程为.以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为.

(1)求圆的极坐标方程和直线的直角坐标方程;

(2)在圆上找一点,使它到直线的距离最小,并求点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,圆C的参数方程为(θ为参数),直线l经过点P(1,2),倾斜角α=

(1)写出圆C的普通方程和直线l的参数方程;

(2)设直线l与圆C相交于A,B两点,求|PA|·|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为自然对数的底数.

(1)若函数在点处的切线为,求的值;

(2)当时,若在区间上有两个零点,,试判断 的大小关系.

查看答案和解析>>

同步练习册答案