精英家教网 > 高中数学 > 题目详情

【题目】【选修4-4:坐标系与参数方程】

极坐标系的极点为直角坐标系的原点,极轴为轴的正半轴,两神坐标系中的长度单位相同.已知曲线的极坐标方程为

(Ⅰ)求曲线的直角坐标方程;

(Ⅱ)在曲线上求一点,使它到直线 为参数)的距离最短,写出点的直角坐标.

【答案】(1) (2)

【解析】试题分析:(Ⅰ)利用极坐标方程和直角坐标方程的互化公式进行求解;(Ⅱ)消参得到直线的直角坐标方程,确定最优解,利用直线的斜率公式和两条直线垂直进行求解.

试题解析:(Ⅰ)由 ,可得

∴曲线的直角坐标方程为

(Ⅱ)直线的参数方程为为参数),消去的普通方程为 相离,设点,且点到直线 的距离最短,

则曲线在点处的切线与直线 平行,

,又

(舍)或,∴

∴点的坐标为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程为

1)求曲线的普通方程和直线的倾斜角;

2)设点,直线和曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】韩国民意调查机构“盖洛普韩国”2016年11月公布的民调结果显示,受“闺蜜门”时间影响,韩国总统朴槿惠的民意支持率持续下跌,在所调查的1000个对象中,年龄在[20,30)的群体有200人,支持率为0%,年龄在[30,40)和[40,50)的群体中,支持率均为3%;年龄在[50,60)和[60,70)的群体中,支持率分别为6%和13%,若在调查的对象中,除[20,30)的群体外,其余各年龄层的人数分布情况如频率分布直方图所示,其中最后三组的频数构成公差为100的等差数列.

(1)依频率分布直方图求出图中各年龄层的人数

(2)请依上述支持率完成下表:

年龄分布

是否支持

[30,40)和[40,50)

[50,60)和[60,70)

合计

支持

不支持

合计

根据表中的数据,能否在犯错误的概率不超过0.001的前提下认为年龄与支持率有关?

附表:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.076

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中 参考数据:125×33=15×275,125×97=25×485)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上不具有单调性.

(1)求实数的取值范围;

(2)若的导函数,设,试证明对任意两个不相等正数,不等式恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列中, ,且.

(1)求数列的通项公式;

(2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2018江西莲塘一中、临川二中高三上学期第一次联考二次函数的图象过原点,对,恒有成立,设数列满足

(I)求证:对,恒有成立;

(II)求函数的表达式;

(III)设数列项和为,求的值.

【答案】(I)证明见解析;(II);(III)2018.

【解析】试题分析:

(1)左右两侧做差,结合代数式的性质可证得,即对,恒有:成立;

(2)由已知条件可设,给定特殊值,令,从而可得:,则,从而有恒成立,据此可知,则.

(3)结合(1)(2)的结论整理计算可得,据此分组求和有:.

试题解析:

(1)(仅当时,取“=”)

所以恒有:成立;

(2)由已知条件可设,则中,令

从而可得:,所以,即

又因为恒成立,即恒成立,

时,,不合题意舍去,

时,即,所以,所以.

(3)

所以

.

型】解答
束】
22

【题目】已知函数 为定义在上的奇函数.

(1)求函数的值域;

(2)当时,不等式恒成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆轴负半轴相交于点,与轴正半轴相交于点.

1)若过点的直线被圆截得的弦长为,求直线的方程;

2)若在以为圆心半径为的圆上存在点,使得 (为坐标原点),求的取值范围;

3)设是圆上的两个动点,点关于原点的对称点为,点关于轴的对称点为,如果直线轴分别交于,问是否为定值?若是求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数,其图象与轴交于 两点,且.

(Ⅰ)求的取值范围;

(Ⅱ)证明: 的导函数).

(Ⅲ)设点在函数图象上,且为等腰直角三角形,记,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某项竞赛分为初赛、复赛、决赛三个阶段进行,每个阶段选手要回答一个问题.规定正确回答问题者进入下一阶段竞赛,否则即遭淘汰.已知某选手通过初赛、复赛、决赛的概率分别是 ,且各阶段通过与否相互独立.

(1)求该选手在复赛阶段被淘汰的概率;

(2)设该选手在竞赛中回答问题的个数为,求的分布列、数学期望.

查看答案和解析>>

同步练习册答案