精英家教网 > 高中数学 > 题目详情
化简:
1-cosθ
1+cosθ
+
1+cosθ
1-cosθ
=
-
2
sinθ
-
2
sinθ
.其中θ∈(π,
2
)
分析:直接利用同角三角函数的基本关系式,化简表达式,结合θ的范围,求出表达式的值即可.
解答:解:因为θ∈(π,
2
)
,所以sinθ<0,
1-cosθ
1+cosθ
+
1+cosθ
1-cosθ

=
(1-cosθ)2
1-cos2θ
+
(1+cosθ)2
1-cos2θ

=
(1-cosθ)2
sin2θ
+
(1+cosθ)2
sin2θ

=-
1-cosθ
sinθ
-
1+cosθ
sinθ

=-
2
sinθ

故答案为:-
2
sinθ
点评:本题考查三角函数的化简求值,同角三角函数的基本关系式的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知tan(α+3π)=3,求
sinα-2cosα
sinα+cosα
的值;
(2)已知α为第二象限角,化简cosα
1-sinα
1+sinα
+sinα
1-cosα
1+cosα

查看答案和解析>>

科目:高中数学 来源: 题型:

若sinα>0,sinαcosα<0,化简cosα
1-sinα
1+sinα
+sinα
1-cosα
1+cosα
=
2
sin(α-
π
4
2
sin(α-
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

①若α为第二象限角,化简cosα
1-sinα
1+sinα
+sinα
1-cosα
1+cosα

②求
2sin10°-cos20°
sin20°
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知角α的顶点在原点,始边与x轴正半轴重合,终边为射线4x+3y=0(x≥0),求5sinα-3tanα+2cosα的值.
(2)化简:
1-cosθ
1+cosθ
+
1+cosθ
1-cosθ
.其中θ∈(π,
2

查看答案和解析>>

同步练习册答案