【题目】已知椭圆E过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率,∠F1AF2的平分线所在直线为l.
(1)求椭圆E的方程;
(2)设l与x轴的交点为Q,求点Q的坐标及直线l的方程;
(3)在椭圆E上是否存在关于直线l对称的相异两点?若存在,请找出;若不存在,说明理由.
【答案】(1)(2)点Q的坐标;2x-y-1=0 (3)不存在
【解析】
(1)设出椭圆方程,根据椭圆E经过点A(2,3),离心率,建立方程组,求得几何量,即可得到椭圆E的方程;
(2)求得AF1方程、AF2方程,利用角平分线性质,即可求得∠F1AF2的平分线所在直线l的方程;
(3)假设存在B(x1,y1)C(x2,y2)两点关于直线l对称,设出直线BC方程代入椭圆E的方程,求得BC中点代入直线2x-y-1=0上,即可得到结论.
(1)设椭圆方程为(a>b>0)∵椭圆E经过点A(2,3),离心率e= 解得a2=16,b2=12.
∴椭圆方程E为:.
(2)F1(-2,0),F2(2,0),∵A(2,3),∴AF1方程为:3x-4y+6=0,AF2方程为:x=2
设角平分线上任意一点为P(x,y),得2x-y-1=0或x+2y-8=0
∵斜率为正,∴直线方程为2x-y-1=0;l与x轴的交点为Q,点Q的坐标。
(3)假设存在B(x1,y1)C(x2,y2)两点关于直线l对称,∴kBC=-,∴直线BC方程为y=-x+m代入椭圆方程得x2-mx+m2-12=0,∴BC中点为,代入直线2x-y-1=0上,得m=4.∴BC中点为(2,3)与A重合,不成立,所以不存在满足题设条件的相异的两点.
科目:高中数学 来源: 题型:
【题目】一列火车从重庆驶往北京,沿途有n个车站(包括起点站重庆和终点站北京).车上有一邮政车厢,每停靠一站便要卸下火车已经过的各站发往该站的邮袋各1个,同时又要装上该站发往以后各站的邮袋各1个,设从第k站出发时,邮政车厢内共有邮袋ak个(k=1,2,…,n).
(1)求数列{ak}的通项公式;
(2)当k为何值时,ak的值最大,求出ak的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】目前,学案导学模式已经成为教学中不可或缺的一部分,为了了解学案的合理使用是否对学生的期末复习有着重要的影响,我校随机抽取100名学生,对学习成绩和学案使用程度进行了调查,统计数据如表所示:
已知随机抽查这100名学生中的一名学生,抽到善于使用学案的学生概率是0.6.
参考公式:,其中 .
(1)请将上表补充完整(不用写计算过程);
(2)试运用独立性检验的思想方法有多大的把握认为学生的学习成绩与对待学案的使用态度有关?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据统计,仅在北京地区每天就有500万单快递等待派送,近5万多名快递员奔跑在一线,快递网点人员流动性也较强,各快递公司需要经常招聘快递员,保证业务的正常开展.下面是50天内甲、乙两家快递公司的快递员的每天送货单数统计表:
送货单数 | 30 | 40 | 50 | 60 | |
天数 | 甲 | 10 | 10 | 20 | 10 |
乙 | 5 | 15 | 25 | 5 |
已知这两家快递公司的快递员的日工资方案分别为:甲公司规定底薪元,每单抽成元;乙公司规定底薪元,每日前单无抽成,超过单的部分每单抽成元.
(1)分别求甲、乙快递公司的快递员的日工资(单位:元)与送货单数的函数关系式;
(2)若将频率视为概率,回答下列问题:
①记甲快递公司的快递员的日工资为(单位:元),求的分布列和数学期望;
②小赵拟到甲、乙两家快递公司中的一家应聘快递员的工作,如果仅从日收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=x2﹣bx+alnx.
(1)若b=2,函数f(x)有两个极值点x1 , x2 , 且x1<x2 , 求实数a的取值范围;
(2)在(1)的条件下,证明:f(x2)>﹣ ;
(3)若对任意b∈[1,2],都存在x∈(1,e)(e为自然对数的底数),使得f(x)<0成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点M(﹣3,0),点P在y轴上,点Q在x轴的正半轴上,点N在直线PQ上,且满足 . (Ⅰ)当点P在y轴上移动时,求点N的轨迹C的方程;
(Ⅱ)过点 做直线l与轨迹C交于A,B两点,若在x轴上存在一点E(x0 , 0),使得△AEB是以点E为直角顶点的直角三角形,求直线l的斜率k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4cosθ﹣2sinθ.
(1)求C的参数方程;
(2)若点A在圆C上,点B(3,0),求AB中点P到原点O的距离平方的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com