精英家教网 > 高中数学 > 题目详情
11.cos$\frac{2017π}{6}$的值是(  )
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

分析 直接利用诱导公式化简求值即可.

解答 解:cos$\frac{2017π}{6}$=cos($\frac{336×6+1}{6}$π)=cos$\frac{π}{6}$=$\frac{\sqrt{3}}{2}$.
故选:D.

点评 本题考查诱导公式的应用,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,在正四棱锥P-ABCD中,点M为侧棱PA的中点.
(Ⅰ)求证:PC∥平面BDM;
(Ⅱ)若PA⊥PC,求证:PA⊥平面BDM.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知p:x=1,q:x3-2x+1=0,则p是q的充分不必要条件(从“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中选出适当的一种填空).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在五面体ABCDEF中,底面ABCD是正方形,△ADE,△BCF都是等边三角形,EF∥AB,且EF>AB,M,O分别为EF,BD的中点,连接MO.
(Ⅰ)求证:MO⊥底面ABCD;
(Ⅱ)若EF=2AB,求二面角E-BD-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.《算数书》竹简于上世纪八十年代在湖北省张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“禾盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈$\frac{1}{36}$L2h.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V≈$\frac{7}{264}$L2h相当于将圆锥体积公式中的圆周率π近似取为(  )
A.$\frac{22}{7}$B.$\frac{25}{8}$C.$\frac{23}{7}$D.$\frac{157}{50}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设向量$\vec a=(1,-1)$,$\vec b=(-1,2)$,则$(2\overrightarrow a+\overrightarrow b)•\overrightarrow a$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.对于函数f(x),若在定义域内存在实数x,满足f(-x)=-f(x),则称f(x)为“局部奇函数”.
(I) 已知二次函数f(x)=ax2+2bx-3a(a,b∈R),试判断f(x)是否为“局部奇函数”?并说明理由;
(II) 设f(x)=2x+m-1是定义在[-1,2]上的“局部奇函数”,求实数m的取值范围;
(III) 设f(x)=4x-m•2x+1+m2-3,若f(x)不是定义域R上的“局部奇函数”,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设向量$\overrightarrow{a}$=(2tanα,tanβ),向量$\overrightarrow{b}$=(4,-3),且$\overrightarrow{a}$+$\overrightarrow{b}$=$\overrightarrow{0}$,则tan(α+β)等于(  )
A.$\frac{1}{7}$B.-$\frac{1}{5}$C.$\frac{1}{5}$D.-$\frac{1}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知实数a>0,且函数$f(x)=\frac{{{2^x}-a}}{{{2^x}+a}}$为奇函数.判断函数f(x)的单调性,并用单调性的定义证明.

查看答案和解析>>

同步练习册答案