A. | 4 | B. | 6 | C. | 8 | D. | 9 |
分析 如图所示,由于$\overrightarrow{PA}$=$\overrightarrow{AE}+\overrightarrow{EP}$,$\overrightarrow{PB}$=$\overrightarrow{BE}+\overrightarrow{EP}$,$\overrightarrow{BE}+\overrightarrow{AE}$=$\overrightarrow{0}$,代入可得$\overrightarrow{PA}$$•\overrightarrow{PB}$=${\overrightarrow{EP}}^{2}$-1,同理可得:$\overrightarrow{PC}•\overrightarrow{PD}$=${\overrightarrow{FP}}^{2}$-1.由于$|\overrightarrow{PE}|+|\overrightarrow{PF}|$=4,利用基本不等式的性质即可得出.
解答 解:如图所示,
∵$\overrightarrow{PA}$=$\overrightarrow{AE}+\overrightarrow{EP}$,$\overrightarrow{PB}$=$\overrightarrow{BE}+\overrightarrow{EP}$,$\overrightarrow{BE}+\overrightarrow{AE}$=$\overrightarrow{0}$,
∴$\overrightarrow{PA}$$•\overrightarrow{PB}$=($\overrightarrow{AE}+\overrightarrow{EP}$)•($\overrightarrow{BE}+\overrightarrow{EP}$)=$\overrightarrow{AE}•\overrightarrow{BE}$+${\overrightarrow{EP}}^{2}$+$\overrightarrow{EP}(\overrightarrow{BE}+\overrightarrow{AE})$=${\overrightarrow{EP}}^{2}$-1,
同理可得:$\overrightarrow{PC}•\overrightarrow{PD}$=${\overrightarrow{FP}}^{2}$-1.
∵$|\overrightarrow{PE}|+|\overrightarrow{PF}|$=4,
∴$\overrightarrow{PA}•\overrightarrow{PB}$+$\overrightarrow{PC}•\overrightarrow{PD}$=${\overrightarrow{EP}}^{2}$-1+${\overrightarrow{FP}}^{2}$-1=${\overrightarrow{EP}}^{2}$+${\overrightarrow{FP}}^{2}$-2≥$\frac{(|\overrightarrow{PE}|+|\overrightarrow{PF}|)^{2}}{2}$-2=6.当且仅当$|\overrightarrow{PE}|$=$|\overrightarrow{PF}|$=2时取等号.
∴$\overrightarrow{PA}•\overrightarrow{PB}$+$\overrightarrow{PC}•\overrightarrow{PD}$最小值是6.
故选:B.
点评 本题考查了椭圆的定义标准方程及其性质、向量的三角形法则、基本不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{3}$-1 | B. | $\frac{1}{3}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{3}-1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com