【题目】某家庭进行理财投资,根据长期收益率市场预测,投资类产品的收益与投资额成正比,投资类产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元.
(1)分别写出两类产品的收益与投资额的函数关系;
(2)该家庭有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?
【答案】(1)f(x)=x(x≥0),g(x)=(x≥0);(2)投资A类为16万元,投资B类为4万,最大3万元.
【解析】
试题分析:(1)由投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比,结合函数图象,我们可以利用待定系数法来求两种产品的收益与投资的函数关系;
(2)由(1)的结论,我们设设投资债券类产品x万元,则股票类投资为20-x万元.这时可以构造出一个关于收益y的函数,然后利用求函数最大值的方法进行求解.
试题解析:(1)设两类产品的收益与投资额的函数分别为f(x)=k1x,g(x)=k2.
由已知得f(1)==k1,g(1)==k2,所以f(x)=x(x≥0),g(x)=(x≥0).
(2)设投资类产品为x万元,则投资类产品为(20-x)万元.
依题意得y=f(x)+g(20-x)=+(0≤x≤20).
令t=(0≤t≤2),则y=+t=-(t-2)2+3,
所以当t=2,即x=16时,收益最大,ymax=3万元.
科目:高中数学 来源: 题型:
【题目】某同学在研究函数(x∈R)时,分别给出下面几个结论:
①函数f(x)是奇函数;②函数f(x)的值域为(-1,1);③函数f(x)在R上是增函数;其中正确结论的序号是
A. ①② B. ①③ C. ②③ D. ①②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(3﹣a)x﹣2+a﹣2lnx(a∈R)
(1)若函数y=f(x)在区间(1,3)上单调,求a的取值范围;
(2)若函数g(x)=f(x)﹣x在(0, )上无零点,求a的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知和定点,由外一点向引切线,切点为,且满足.(1)求实数间满足的等量关系;
(2)求线段长的最小值;
(3)若以为圆心所作的与有公共点,试求半径取最小值时的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax+ (a>1),
(1)判断函数f(x)在(-1,+∞)上的单调性,并证明你的判断;
(2)若a=3,求方程f(x)=0的正根(精确到0.1).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com