精英家教网 > 高中数学 > 题目详情

【题目】下列选项中,说法正确的是(

A.的否定是

B.若向量满足 ,则的夹角为钝角

C.,则

D.的必要条件

【答案】D

【解析】

对于A根据命题的否定可得:x0Rx02-x0≤0”的否定是xRx2-x0”,即可判断出;对于B若向量满足,则的夹角为钝角或平角;对于Cm=0时,满足am2bm2,但是ab不一定成立;对于D根据元素与集合的关系即可做出判断.

选项A根据命题的否定可得:x0Rx02-x0≤0”的否定是xRx2-x0”,因此A不正确;

选项B若向量满足,则的夹角为钝角或平角,因此不正确.

选项Cm=0,满足am2bm2,但是ab不一定成立,因此不正确;

选项D,则,所以一定可以推出,因此的必要条件,故正确.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知下列命题:

①在线性回归模型中,相关指数越接近于1,表示回归效果越好;

②两个变量相关性越强,则相关系数r就越接近于1;

③在回归直线方程中,当解释变量每增加一个单位时,预报变量平均减少0.5个单位;

④两个模型中残差平方和越小的模型拟合的效果越好.

⑤回归直线恒过样本点的中心,且至少过一个样本点;

⑥若的观测值满足≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;

⑦从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误. 其中正确命题的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是大于1的自然数,找出所有自然数,使得对于存在互质的自然数,满足.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某旅游爱好者计划从3个亚洲国家A1A2A33个欧洲国家B1B2B3中选择2个国家去旅游.

(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;

(2)若从亚洲国家和欧洲国家中各选1个,求这两个国家包括A1,但不包括B1的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某景区内有两条道路,现计划在上选择一点,新建道路,并把所在的区域改造成绿化区域.已知.若绿化区域改造成本为万元,新建道路成本为万元.

1)①设,写出该计划所需总费用的表达式,并写出的范围;

②设,写出该计划所需总费用的表达式,并写出的范围;

2)从上面两个函数关系中任选一个,求点在何处时改造计划的总费用最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数上的偶函数,且,若上单调递减,则函数上是( )

A. 增函数 B. 减函数 C. 先增后减的函数 D. 先减后增的函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学为研究网络游戏对当代青少年的影响作了一次调查,共调查了50名同学,其中男生26人,有8人不喜欢玩游戏,而调查的女生中有9人喜欢玩游戏.

1)根据以上数据完成2×2的列联表;

2)根据以上数据,在犯错误的概率不超过0.025的前提下,能否认为喜欢玩电脑游戏与性别有关系

男生

女生

总计

喜欢玩游戏

不喜欢玩游戏

总计

0.100

0.050

0.025

0.010

0.001

k

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某机构为了解某地区中学生在校月消费情况,随机抽取了 100名中学生进行调查.如图是根据调査的结果绘制的学生在校月消费金额的频率分布直方图.已知三个金额段的学生人数成等差数列,将月消费金额不低于550元的学生称为“高消费群”.

(1)求的值,并求这100名学生月消费金额的样本平均数 (同一组中的数据用该组区间的中点值作代表);

(2)根据已知条件完成下面列联表,并判断能否有的把握认为“高消费群”与性别有关?

附: (其中样本容量)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(I)讨论函数的单调性;

(II)设.如果对任意,求的取值范围。

查看答案和解析>>

同步练习册答案