【题目】已知函数的定义域为,设,.
(Ⅰ)试确定t的取值范围,使得函数在上为单调函数;
(Ⅱ)求证:;
(Ⅲ)求证:对于任意的,总存在,满足,又若方程在上有唯一解,请确定t的取值范围.
【答案】(Ⅰ);(Ⅱ)见解析;(Ⅲ)见解析
【解析】
(Ⅰ)求导得,从而可得在,上递增,在上递减,从而确定的取值范围;
(Ⅱ)借助(Ⅰ)可知,在处取得极小值,求出,则在,上的最小值为,从而得证;
(Ⅲ)化简,从而将化为,令,则证明方程在上有解,并讨论解的个数;由二次函数的性质讨论即可.
(Ⅰ)因为,
令,得:或;令,得:
所以在上单调递增,在上单调递减,
要使在为单调函数,则
所以的取值范围为
(Ⅱ)证:因为在上单调递增,在上单调递减,所以在处取得极小值.
又,所以在的最小值为,
从而当时,,即 .
(Ⅲ)证:因为,所以,即为
令,从而问题转化为证明方程在上有解,
并讨论解的个数,因为,
当或时,,所以在上有解,且只有一解.
②当时,且,但由于,所以在上有解,且有两解
③当时,由得:或,在上有且只有一解;
当时,由得:或,所以在上也只有一解
综上所述,对任意的,总存在
当方程在上有唯一解,的取值范围为
科目:高中数学 来源: 题型:
【题目】教材曾有介绍:圆上的点处的切线方程为。我们将其结论推广:椭圆上的点处的切线方程为,在解本题时可以直接应用。已知,直线与椭圆有且只有一个公共点.
(1)求的值;
(2)设为坐标原点,过椭圆上的两点、分别作该椭圆的两条切线、,且与交于点。当变化时,求面积的最大值;
(3)在(2)的条件下,经过点作直线与该椭圆交于、两点,在线段上存在点,使成立,试问:点是否在直线上,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点与短轴两端点构成一个面积为2的等腰直角三角形,为坐标原点.
(1)求椭圆的方程;
(2)设点在椭圆上,点在直线上,且,求证:为定值;
(3)设点在椭圆上运动,,且点到直线的距离为常数,求动点的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设甲乙两地相距100海里,船从甲地匀速驶到乙地,已知某船的最大船速是36海里/时:当船速不大于每小时30海里/时,船每小时使用的燃料费用和船速成正比;当船速不小于每小时30海里/时,船每小时使用的燃料费用和船速的平方成正比;当船速为30海里/时,它每小时使用的燃料费用为300元;其余费用(不论船速为多少)都是每小时480元;
(1)试把每小时使用的燃料费用P(元)表示成船速v(海里/时)的函数;
(2)试把船从甲地行驶到乙地所需要的总费用Y表示成船速v的函数;
(3)当船速为每小时多少海里时,船从甲地到乙地所需要的总费用最少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某农场规划将果树种在正方形的场地内.为了保护果树不被风吹,决定在果树的周围种松树. 在下图里,你可以看到规划种植果树的列数(n),果树数量及松树数量的规律:
(1)按此规律,n = 5时果树数量及松树数量分别为多少;并写出果树数量,及松树数量关于n的表达式
(2)定义: 为增加的速度;现农场想扩大种植面积,问:哪种树增加的速度会更快?并说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,动点到定点的距离与它到直线的距离相等.
(1)求动点的轨迹的方程;
(2)设动直线与曲线相切于点,与直线相交于点.
证明:以为直径的圆恒过轴上某定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:对于数列,如果存在常数,使对任意正整数,总有成立,那么我们称数列为“﹣摆动数列”.
(1)设,,,判断数列、是否为“﹣摆动数列”,并说明理由;
(2)已知“﹣摆动数列”满足:,.求常数的值;
(3)设,,且数列的前项和为.求证:数列是“﹣摆动数列”,并求出常数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知点F(1,0)为抛物线y2=2px(p>0)的焦点,过点F的直线交抛物线于A、B两点,点C在抛物线上,使得△ABC的重心G在x轴上.
(1)求p的值及抛物线的准线方程 ;
(2)求证:直线OA与直线BC的倾斜角互补;
(3)当xA∈(1,2)时,求△ABC面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com