精英家教网 > 高中数学 > 题目详情
命题p:“x2=1”是“x=-1”的充分不必要条件,命题q:函数y=
x2-2x-3
的定义域是(-∞,-1]∪[3,+∞),则下列结论:
①“p或q”为假;  ②“p且q”为真;  ③p真q假;   ④p假q真.
则正确结论的序号为
 
(把你认为正确的结论编号都写上).
考点:复合命题的真假
专题:简易逻辑
分析:先判定命题p与q的真假,再利用复合命题真假的判定方法即可得出.
解答: 解:命题p:由x2=1解得x=±1,∴“x2=1”是“x=-1”的必要不充分条件,因此是假命题;
对于命题q:要使函数y=
x2-2x-3
有意义:则x2-2x-3≥0,解得x≥3或x≤-1.因此其定义域是(-∞,-1]∪[3,+∞),是真命题.
∴①“p或q”为真命题,因此不正确;
②“p且q”为真,是假命题,因此不正确;
③p真q假,不正确;
④p假q真,正确.
综上可得:正确的结论为:④.
故答案为:④.
点评:本题考查了简易逻辑的判定方法、函数的定义域,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
AB
=(1,5,-2),
BC
=(3,1,z),若
AB
BC
PB
=(x-1,y,-3),且
BP
⊥面ABC,则
PB
=(  )
A、(
40
7
,-
15
7
,-4)
B、(
40
7
,-
15
7
,-3)
C、(
33
7
,-
15
7
,4)
D、(
33
7
,-
15
7
,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:

若椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,则双曲线
x2
a2
-
y2
b2
=1的渐近线方程为(  )
A、y=±
1
2
x
B、y=±2x
C、y=±4x
D、y=±
1
4
x

查看答案和解析>>

科目:高中数学 来源: 题型:

现有5道试题,其中甲类试题2道,乙类试题3道,现从中随机取2道试题,则至少有1道试题是乙类试题的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下五个结论:
①函数f(x)=x 
1
3
-(
1
2
x的零点在区间(
1
3
1
2
)内;
②平面内的动点P到点F(-2,3)和到直线l:2x+y+1=0的距离相等,则点P的轨迹为抛物线;
③?x>0,不等式2x+
a
x
≥4成立的充要条件a≥2;
④若将函数f(x)=sin(2x-
π
3
)的图象向右平移φ(φ>0)个单位后变为偶函数,则φ的最小值是
π
12

⑤过M(2,0)的直线l与椭圆
x2
2
+y2=1交于P1,P2两点,线段P1P2中点为P,设直线l的斜率为k1(k1≠0),直线OP的斜率为k2,则k1k2等于-
1
2

其中正确结论的个数是(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,F1,F2是双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点,过F1的直线l与C的左、右两支分别交于A,B两点,若|AB|:|BF2|:|AF2|=3:4:5,则双曲线的离心率为(  )
A、
15
B、
13
C、2
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:?x∈R,x2+x≥a;命题q:?x0∈R,x02+2ax0+2-a=0,如果命题p真且命题q假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
cos(-8π-α)+tan(π+α)+cos(α-5π)
sin(π-α)+cot(-π-α)+sin(α-5π)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式组
3x+4y-10≥0
x≤4
y≤3
表示区域D,过区域D中任意一点P作圆x2+y2=1的两条切线且切点分别为A、B,当∠APB最大时,cos∠APB=(  )
A、
3
2
B、
1
2
C、-
3
2
D、-
1
2

查看答案和解析>>

同步练习册答案