精英家教网 > 高中数学 > 题目详情

已知,其中
(1)若的图像在交点(2,)处的切线互相垂直,
的值;
(2)若是函数的一个极值点,和1是的两个零点,
∈(,求
(3)当时,若的两个极值点,当||>1时,
求证:||

(1)(2)=3(3)

解析试题分析:(1),由的图像在交点(2,)处的切线互相垂直,可得解之即可;
(2)由题=
,由题知可解得,故=6-(),=
讨论的单调性可得∈(3,4),故=3;
(3)当时,=
讨论的单调性,||=极大值极小值=F(-)―F(1)
=)+―1,

讨论函数,求出其最小值,即得||>3-4
(1)解:
由题知,即   解得
(2)=
=
由题知,即 解得=6,=-1
=6-(),=
>0,由>0,解得0<<2;由<0,解得>2
在(0,2)上单调递增,在(2,+∞)单调递减,
至多有两个零点,其中∈(0,2),∈(2, +∞)
=0,=6(-1)>0,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知二次函数的图像过点,直线,直线(其中为常数);若直线与函数的图像以及直线与函数以及的图像所围成的封闭图形如阴影所示.
(1)求
(2)求阴影面积关于的函数的解析式;
(3)若过点可作曲线的三条切线,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)若曲线处的切线与直线平行,求a的值;
(2)当时,求的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数时取得极值,求实数的值;
(2)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)(2011•陕西)如图,从点P1(0,0)做x轴的垂线交曲线y=ex于点Q1(0,1),曲线在Q1点处的切线与x轴交于点P2,再从P2做x轴的垂线交曲线于点Q2,依次重复上述过程得到一系列点:P1,Q1;P2,Q2…;Pn,Qn,记Pk点的坐标为(xk,0)(k=1,2,…,n).

(Ⅰ)试求xk与xk﹣1的关系(2≤k≤n);
(Ⅱ)求|P1Q1|+|P2Q2|+|P3Q3|+…+|PnQn|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的导函数。  (1)求函数的单调递减区间;
(2)若对一切的实数,有成立,求的取值范围; 
(3)当时,在曲线上是否存在两点,使得曲线在 两点处的切线均与直线交于同一点?若存在,求出交点纵坐标的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)若,求曲线在点处的切线方程;
(2)若 求函数的单调区间;
(3)若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ex+2x2—3x
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2) 当x ≥1时,若关于x的不等式f(x)≥ax恒成立,求实数a的取值范围;
(3)求证函数f(x)在区间[0,1)上存在唯一的极值点,并用二分法求函数取得极值时相应x的近似值(误差不超过0.2);(参考数据e≈2.7,≈1.6,e0.3≈1.3)。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在区间上为单调增函数,求的取值范围.

查看答案和解析>>

同步练习册答案