精英家教网 > 高中数学 > 题目详情

设函数若f(x)在x=1处连续,则a等于

[  ]

A.

B.

C.

D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数y=f(x)在x=处取得最小值- (t>0),f(1)=0.

(1)求y=f(x)的表达式;

(2)若任意实数x都满足等式f(xg(x)+anx+bn=xn+1g(x)]为多项式,n∈N*),试用t表示anbn

(3)设圆Cn的方程为(xan)2+(ybn)2=rn2,圆CnCn+1外切(n=1,2,3,…);{rn}是各项都是正数的等比数列,记Sn为前n个圆的面积之和,求rnSn.

查看答案和解析>>

科目:高中数学 来源:期末题 题型:解答题

设函数f(x)=2x3-3(a+1)x2+6ax+8,其中a∈R。
(1)若f(x)在x=3处取得极值,求常数a的值;
(2)若f(x)在(-∞,0)上为增函数,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)在区间(a,b)上的导函数为f′(x),f′(x)在区间(a,b)上的导函数为(x),若区间(a,b)上(x)<0恒成立,则称函数f(x)在区间(a,b)上的“凸函数”.已知f(x)=x4-mx3-x2,若对任意的实数m满足|m|≤2时,函数f(x)在区间(a,b)上的“凸函数”,则b-a最大值为(  )

A.4         B.3         C.2         D.1

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省惠州一中高二(上)期中数学试卷(理科)(解析版) 题型:解答题

设函数f(x)的定义域为R,当x<0时f(x)>1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y).数列{an}满足
(Ⅰ)求f(0)的值,判断并证明函数f(x)的单调性;
(Ⅱ)如果存在t、s∈N*,s≠t,使得点(t,as)、(s,at)都在直线y=kx-1上,试判断是否存在自然数M,当n>M时,an>0恒成立?若存在,求出M的最小值,若不存在,请说明理由;
(Ⅲ)若a1=f(0),不等式对不小于2的正整数恒成立,求x的取值范围.

查看答案和解析>>

同步练习册答案