精英家教网 > 高中数学 > 题目详情

【题目】设圆.点分别是圆上的动点,为直线上的动点,则的最小值为( )

A. B. C. D.

【答案】C

【解析】

利用对称的性质,结合两点之间的距离最短,即可求解.

依题意可知圆C1的圆心(5,﹣2),r=2,圆C2的圆心(7,﹣1),R=5,如图所示:

对于直线yx上的任一点P,由图象可知,要使|PA|+|PB|的得最小值,

则问题可转化为求|PC1|+|PC2|﹣R﹣r=|PC1|+|PC2|﹣7的最小值,

即可看作直线yx上一点到两定点距离之和的最小值减去7,

C1关于直线yx对称的点为C1′(﹣2,5),

由平面几何的知识易知当C1′与PC2共线时,|PC1|+|PC2|取得最小值,

即直线yx上一点到两定点距离之和取得最小值为|C1C2|

∴|PA|+|PB|的最小值为=﹣7

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某商区停车场临时停车按时段收费,收费标准为:每辆汽车一次停车不超过1小时收费6元,超过1小时的部分每小时收费8元不足1小时的部分按1小时计算现有甲、乙二人在该商区临时停车,两人停车都不超过4小时.

1若甲停车1小时以上且不超过2小时的概率为,停车付费多于14元的概率为,求甲停车付费恰为6元的概率;

若每人停车的时长在每个时段的可能性相同,求甲、乙二人停车付费之和为36元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面平面,四边形是边长为4的正方形,的中点.

(1)在图中作出并指明平面和平面的交线

(2)求证:

(3)当时,求与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最小正周期是,且在区间上单调递减.

(1)求函数的解析式;

(2)若关于的方程

上有实数解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】厦门市从2003年起每年都举行国际马拉松比赛,每年马拉松比赛期间,都会吸引许多外地游客到厦门旅游,这将极大地推进厦门旅游业的发展,旅游部门将近六年马拉松比赛期间外地游客数量统计如下表:

年份

2012

2013

2014

2015

2016

2017

比赛年份编号

外地游客人数(万人)

(1)若用线性回归模型拟合的关系,求关于的线性回归方程;(精确到

(2)若用对数回归模型拟合的关系,可得回归方程,且相关指数,请用相关指数说明选择哪个模型更合适.(精确到

参考数据:

参考公式:回归方程中,;相关指数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位招聘员工,有名应聘者参加笔试,随机抽查了其中名应聘者笔试试卷,统计他们的成绩如下表:

分数段

人数

1

3

6

6

2

1

1

若按笔试成绩择优录取名参加面试,由此可预测参加面试的分数线为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数其中

(Ⅰ)讨论的单调性

(Ⅱ)若成立求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知e为自然对数的底数,设函数f(x)=(ex﹣1)(x﹣1)k(k=1,2),则(
A.当k=1时,f(x)在x=1处取得极小值
B.当k=1时,f(x)在x=1处取得极大值
C.当k=2时,f(x)在x=1处取得极小值
D.当k=2时,f(x)在x=1处取得极大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4; 白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).
(1)求取出的4张卡片中,含有编号为3的卡片的概率.
(2)在取出的4张卡片中,红色卡片编号的最大值设为X,求随机变量X的分布列和数学期望.

查看答案和解析>>

同步练习册答案