精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的极坐标方程和的直角坐标方程;

2)设是曲线上一点,此时参数,将射线绕原点逆时针旋转交曲线于点,记曲线的上顶点为点,求的面积.

【答案】(1) .(2)

【解析】

1)根据参数方程与直角坐标方程的转化,先将的参数方程转化为直角坐标方程.根据极坐标与直角坐标方程的转化,再将直角坐标方程转化为极坐标方程.根据极坐标与直角坐标方程的转化,的极坐标方程转化为直角坐标方程.

2)根据参数求得的极坐标.根据变换过程可得点的极坐标,根据三角形面积为即可求得的面积.

1)由已知可得

则极坐标方程为

.

2)设点的横坐标为,则由已知可得

且直角坐标,极坐标,其中,

极坐标,则有

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C的参数方程为(α为参数),在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,点P的极坐标为,直线l的极坐标方程为.

(1)求直线l的直角坐标方程与曲线C的普通方程;

(2)Q是曲线C上的动点,M为线段PQ的中点,直线l上有两点AB,始终满足|AB|4,求MAB面积的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知ABC的三个内角ABC所对的边分别是abc,向量(cos Bcos C)(2acb),且

(1)求角B的大小;

(2)b,求ac的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和为

1)若,求证:,其中

2)若对任意均有,求的通项公式;

3)若对任意均有,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国的第一艘航空母舰辽宁舰在某次舰载机起降飞行训练中,有5-15”舰载机准备着舰,已知乙机不能最先着舰,丙机必须在甲机之前着舰(不一定相邻),那么不同的着舰方法种数为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年某开发区一家汽车生产企业计划引进一批新能源汽车制造设备,通过市场分析,全年需投入固定成本3000万元,每生产x(百辆),需另投入成本万元,且,由市场调研知,每辆车售价6万元,且全年内生产的车辆当年能全部销售完.

1)求出2019年的利润(万元)关于年产量x(百辆)的函数关系式;(利润=销售额成本)

22019年产量为多少(百辆)时,企业所获利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行购物抽奖促销活动,规定每位顾客从装有0123的四个相同小球的抽奖箱中,每次取出一球记下编号后放回(连续取两次),若取出的两个小球的编号相加之和等于6,则中一等奖,等于5中二等奖,等于43中三等奖,则顾客抽奖中三等奖的概率为____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由中央电视台综合频道和唯众传媒联合制作的《开讲啦》是中国首档青年电视公开课.每期节目由一位知名人士讲述自己的故事,分享他们对于生活和生命的感悟,给予中国青年现实的讨论和心灵的滋养,讨论青年们的人生问题,同时也在讨论青春中国的社会问题,受到青年观众的喜爱,为了了解观众对节目的喜爱程度,电视台随机调查了两个地区的100名观众,得到如下的列联表,已知在被调查的100名观众中随机抽取1名,该观众是地区当中满意的观众的概率为0.15

1)现从100名观众中用分层抽样的方法抽取20名进行问卷调查,则应抽取满意地区的人数各是多少;

2)在(1)的条件下,从抽取到满意的人中随机抽取2人,设抽到的观众来自不同的地区为事件,求事件的概率;

3)完成上述表格,并根据表格判断是否有的把握认为观众的满意程度与所在地区有关系.

附:参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第28届金鸡百花电影节将于11月19日至23日在福建省厦门市举办,近日首批影展片单揭晓,《南方车站的聚会》《春江水暖》《第一次的离别》《春潮》《抵达之谜》五部优秀作品将在电影节进行展映.若从这五部作品中随机选择两部放在展映的前两位,则《春潮》与《抵达之谜》至少有一部被选中的概率为( )

A.B.C.D.

查看答案和解析>>

同步练习册答案