精英家教网 > 高中数学 > 题目详情
2.已知集合 A={x|x2-x-12>0},B={x|x≥m}.若 A∩B={x|x>4},则实数m的取值范围是((  )
A.(-4,3)B.[-3,4]C.(-3,4)D.(-∞,4]

分析 求出A中不等式的解集确定出A,根据B,以及A与B的交集,确定出m的范围即可.

解答 解:由A中不等式变形得:(x-4)(x+3)>0,
解得:x<-3或x>4,即A={x|x<-3或x>4},
∵B={x|x≥m},A∩B={x|x>4},
∴-3≤m≤4,
则实数m的取值范围是[-3,4].
故选:B.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知f(x)=3x2+1,则f[f(1)]的值等于(  )
A.25B.36C.42D.49

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知$f(x)=acos({\frac{π}{2}x+α})+bsin({\frac{π}{2}x+β})+3$,若f(2014)=4,则f(2016)的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2$\sqrt{2}sin\frac{π}{8}xcos\frac{π}{8}x+2\sqrt{2}{cos^2}\frac{π}{8}x-\sqrt{2}$,x∈R.
(1)求函数f(x)的最小正周期和单调递增区间;
(2)若函数f(x)图象上的两点P,Q的横坐标依次为1,5,O为坐标原点,求S△OPQ

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,棱长都相等的平行六面体ABCD-A′B′C′D′中,∠DAB=∠A′AD=∠A′AB=60°,则二面角A′-BD-A的余弦值为(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.$\frac{\sqrt{3}}{3}$D.-$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1,求过椭圆内点P(4,2)且被P平分的弦所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等差数列{an}中,且a3=-1,a6=-7.
(1)求{an}的通项an
(2)求{an}前n项和Sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.平行四边形ABCD中,$\overrightarrow{AB}=(1,2)$,$\overrightarrow{BD}=(-4,2)$,则该四边形的面积为(  )
A.$\sqrt{5}$B.$2\sqrt{5}$C.5D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数$f(x)=(x-1)(ax-b),f(2-x)=f(2+x),g(x)={log_{\frac{b}{a}}}({x^2}-4x+13)$,则函数g(x)的最小值为(  )
A.2log23B.2C.3D.不确定

查看答案和解析>>

同步练习册答案