精英家教网 > 高中数学 > 题目详情
设曲线y=xn+1(n∈N*),在点(1,1)处的切线与x轴的交点的横坐标为xn,则log2011x1+log2011x2+…+log2011x2010的值为(  )
A、-log20112010B、-1C、log20112010-1D、1
分析:先求曲线在点(1,1)处的切线方程,从而得出切线与x轴的交点的横坐标为xn,再求相应的函数值.
解答:解:y=xn+1在(1,1)处的切线方程为y-1=(n+1)(x-1),该切线与x轴的交点的横坐标为xn=
n
n+1

所以log2011x1+log2011x2+…+log2011x2010=log2011
1
2
×
2
3
…×
2010
2011
=-1

故选B.
点评:本题利用了导数的几何意义,同时利用了对数运算的性质求出函数
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn,则x1•x2•…•x2011的值为(  )
A、
1
2010
B、
2009
2010
C、
1
2012
D、
2010
2011

查看答案和解析>>

科目:高中数学 来源: 题型:

设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的定点的横坐标为xn,令an=lgxn
(1)当n=1时,求曲线在点(1,1)处的切线方程;
(2)求a1+a2+…+a99的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南模拟)设曲线y=xn+1(n∈N)在点(1,1)处的切线与x轴的交点的横坐标为xn,则x1•x2•x3•…•x2012的值为
1
2013
1
2013

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•昌图县模拟)设曲线y=xn+1(n∈N*)在点(1,l)处的切线与x轴的交点的横坐标为xn,则log2013x1+log2013x2+log2013 x3+…+log2013 x2011+log2013x2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设曲线y=xn+1(n∈N*)在点(2,2 n+1 )处的切线与x轴交点的横坐标为an,则an=
2n
n+1
2n
n+1

查看答案和解析>>

同步练习册答案