精英家教网 > 高中数学 > 题目详情

【题目】已知四棱锥,底面为菱形, ,H为上的点,过的平面分别交于点,且平面

(1)证明:

(2)当的中点, 与平面所成的角为,求二面角的余弦值.

【答案】(1)见解析; (2).

【解析】

(1)连结于点,连结.由题意可证得平面,则由线面平行的性质定理可得据此即可证得题中的结论;

(2)结合几何体的空间结构特征建立空间直角坐标系,求得半平面的法向量,然后求解二面角的余弦值即可.

(1)证明:连结于点,连结.因为为菱形,所以,且的中点,因为,所以

因为平面,所以平面

因为平面,所以

因为平面平面,且平面平面

所以,所以

(2)由(1)知,因为,且的中点,

所以,所以平面,所以与平面所成的角为

所以,所以,因为,所以

分别以轴,建立如图所示空间直角坐标系,设,则

所以

记平面的法向量为,则

,则,所以

记平面的法向量为,则

,则,所以

记二面角的大小为,则

所以二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图在三棱柱侧面底面.

(1)求证平面

(2)求棱柱的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:

设农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.

1求选取的2组数据恰好是不相邻2天数据的概率;

2若选取的是12月1日12月5日的两组数据,请根据12月2日12月4日的数据,求出y关于x的线性回归方程=bx+a;

3若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

(注:)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1998年,某地在抗洪抢险中接到预报,24小时后有一个超历史最高水位的洪峰到达,为保万无一失,指挥部决定在24小时内筑起一道堤坝作为第二防线.经计算,其工程量除动用现有军民连续奋战外,还需要20台大型翻斗车同时作业24小时.但是,除了第一辆车可以立即调入工作外,其余车辆需从各单位紧急抽调,每隔20分钟有一辆车到达投入作业,已知指挥部最多能组织到25辆车.问24小时内能否完成第二防线工程?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆关于直线对称的圆为.

(1)求圆的方程;

(2)过点作直线与圆交于两点, 是坐标原点,是否存在这样的直线,使得在平行四边形?若存在,求出所有满足条件的直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,随着一带一路倡议的推进,中国与沿线国家旅游合作越来越密切,中国到一带一路沿线国家的游客人也越来越多,如图是2013-2018年中国到一带一路沿线国家的游客人次情况,则下列说法正确的是(  )

①2013-2018年中国到一带一路沿线国家的游客人次逐年增加

②2013-2018年这6年中,2016年中国到一带一路沿线国家的游客人次增幅最小

③2016-2018年这3年中,中国到一带一路沿线国家的游客人次每年的增幅基本持平

A.①③B.②③C.①②D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:的右焦点为F,点A(一2,2)为椭圆C内一点。若椭圆C上存在一点P,使得|PA|+|PF|=8,则m的最大值是___

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知点是以为底边的等腰三角形,点在直线:上.

(1)求边上的高所在直线的方程;

(2)求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 已知函数(a为常数).

(Ⅰ)当时,求函数的单调区间;

(Ⅱ)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案