【题目】已知函数.
(1)判断函数在区间上零点的个数;
(2)函数在区间上的极值点从小到大分别为,证明:
(Ⅰ);
(Ⅱ)对一切成立.
【答案】(1)两个零点;(2)(I)见解析;(Ⅱ)见解析
【解析】
(1)对求导,利用导数得出函数的单调性,结合零点存在性定理即可得出零点的个数;
(2) (Ⅰ)对函数求导,由(1)得出的范围,进而得到,利用诱导公式即可得出;
(Ⅱ)由(Ⅰ)得出 >>,结合的单调性确定,且,对n为偶数和奇数进行分类讨论,即可得出对一切成立.
(1)
当时,,
在上单调递减,,在上无零点
当时,,在上单调递增,
在上有唯一零点
当时,,上单调递减
,上有唯一零点
综上,函数在区间上有两个零点。
(2)
(I)由(1)知在无极值点;在有极小值点,即为;
在有极大值点,即为,同理可得,在有极小值点,
在有极值点.由得
,,由函数在单调递增,
得,,
由在单调递减得
;
(Ⅱ)同理, >>
由在上单调递减得
,且
当n为偶数时,从开始相邻两项配对,每组和均为负值,
即,结论成立;
当n为奇数时,从开始相邻两项配对,每组和均为负值,还多出最后一项也是负值,即,结论也成立。
综上,对一切,成立.
科目:高中数学 来源: 题型:
【题目】已知、为椭圆()和双曲线的公共顶点,、分为双曲线和椭圆上不同于、的动点,且满足,设直线、、、的斜率分别为、、、.
(1)求证:点、、三点共线;
(2)求的值;
(3)若、分别为椭圆和双曲线的右焦点,且,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有以下命题:
①若函数f(x)既是奇函数又是偶函数,则f(x)的值域为{0};
②若函数f(x)是偶函数,则f(|x|)=f(x);
③若函数f(x)在其定义域内不是单调函数,则f(x)不存在反函数;
④若函数f(x)存在反函数f﹣1(x),且f﹣1(x)与f(x)不完全相同,则f(x)与f﹣1(x)图象的公共点必在直线y=x上;
其中真命题的序号是 .(写出所有真命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年3月5日,国务院总理李克强作出的政府工作报告中,提到要“惩戒学术不端,力戒学术不端,力戒浮躁之风”.教育部2014年印发的《学术论文抽检办法》通知中规定:每篇抽检的学术论文送3位同行专家进行评议,3位专家中有2位以上(含3位)专家评议意见为“不合格”的学术论文,将认定为“存在问题学术论文”.有且只有1位专家评议意见为“不合格”的学术论文,将再送另外2位同行专家(不同于前3位专家)进行复评,2位复评专家中有1位以上(含1位)专家评议意见为“不合格”的学术论文,将认定为“存在问题学术论文”.设每篇学术论文被每位专家评议为“不合格”的概率均为,且各篇学术论文是否被评议为“不合格”相互独立.
(1)若,求抽检一篇学术论文,被认定为“存在问题学术论文”的概率;
(2)现拟定每篇抽检论文不需要复评的评审费用为900元,需要复评的总评审费用1500元;若某次评审抽检论文总数为3000篇,求该次评审费用期望的最大值及对应的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于函数,给出以下四个命题,其中真命题的序号是_______.
①时,单调递减且没有最值;
②方程一定有解;
③如果方程有解,则解的个数一定是偶数;
④是偶函数且有最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com