精英家教网 > 高中数学 > 题目详情

【题目】已知动圆经过点,且和直线相切.

(Ⅰ)求该动圆圆心的轨迹的方程;

(Ⅱ)已知点,若斜率为1的直线与线段相交(不经过坐标原点和点),且与曲线交于两点,求面积的最大值.

【答案】(Ⅰ);(Ⅱ) .

【解析】试题分析:(1)根据抛物线的定义得到点到点距离等于点到直线距离,所以动点的轨迹是以为焦点,直线为准线的抛物线,从而得到方程;(2)联立直线和曲线得到二次方程,由弦长公式得到,由点线距离得到,进而得到面积表达式,求导可得到最值.

解析:

(Ⅰ)由题意可知点到点距离等于点到直线距离,所以动点的轨迹是以为焦点,直线为准线的抛物线,

故:曲线的方程是.

(Ⅱ)设直线的方程为,其中

联立方程组,消去得/span>

恒大于零

,由求根公式得:

,∴到直线的距离为

,则

上递增,在上递增.

时即时取得最大值.

的最大面积为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,棱形的边长为6, ,.将棱形沿对角线折起,得到三棱锥,点是棱的中点, .

(Ⅰ)求证:∥平面;

(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形CDEF是正方形,四边形ABCD为直角梯形,∠ADC90°ABDC,平面CDEF⊥平面ABCDABADCDaMFB上,且BD∥平面ECM

1)求证:MBF中点;

2)求证:平面BCF⊥平面EMC

3)求直线CD与平面ECM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制,均为整数)分成 六组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题:

(1)求分数内的频率,并补全这个频率分布直方图;

(2)从频率分布直方图中,估计本次考试成绩的中位数;

(3)若从第1组和第6组两组学生中,随机抽取2人,求所抽取2人成绩之差的绝对值大于10的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市举行了一次初一学生调研考试,为了解本次考试学生的数学学科成绩情况,从中抽取部分学生的分数(满分为100分,得分取正整数,抽取学生的分数均在之内)作为样本(样本容量)进行统计,按照的分组方法作出频率分布直方图,并作出了样本分数的茎叶图(茎叶图中仅列出了得分在的数据].

(Ⅰ)求频率分布直方图中的的值,并估计学生分数的中位数;

(Ⅱ)字在选取的样本中,从成绩在80分以上(含80分)的学生中随机抽取2名学生,求所抽取的2名学生中恰有一人得分在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】寒冷的冬天,某高中一组学生来到一大棚蔬菜基地,研究种子发芽与温度控制技术的关系,他们分别记录五组平均温度及种子的发芽数,得到如下数据:

平均温度

11

10

13

9

12

发芽数(颗)

25

23

30

16

26

(Ⅰ)若从五组数据中选取两组数据,求这两组数据平均温度相差不超过概率;

(Ⅱ)求关于的线性回归方程

)若由线性回归方程得到的估计数据与实际数据的误差不超过2颗,则认为得到的线性回归方程是可靠的,试问(Ⅱ)屮所得的线性回归方程是否可靠?

(注:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列中,a1=2,a3+2a2a4的等差中项.

(1)求数列的通项公式;

(2)log2,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中, 是坐标原点,设函数的图象为直线,且轴、轴分别交于两点,给出下列四个命题:

存在正实数,使的面积为的直线仅有一条;

存在正实数,使的面积为的直线仅有二条;

存在正实数,使的面积为的直线仅有三条;

存在正实数,使的面积为的直线仅有四条.

其中,所有真命题的序号是( ).

A. ①②③ B. ③④ C. ②④ D. ②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某校学生参加社区服务的情况,采用按性别分层抽样的方法进行调查.已知该校共有学生960人,其中男生560人,从全校学生中抽取了容量为的样本,得到一周参加社区服务的时间的统计数据好下表:

超过1小时

不超过1小时

20

8

12

m

(Ⅰ)求

(Ⅱ)能否有95%的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关?

(Ⅲ)以样本中学生参加社区服务时间超过1小时的频率作为该事件发生的概率,现从该校学生中随机调查6名学生,试估计6名学生中一周参加社区服务时间超过1小时的人数.

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

同步练习册答案