精英家教网 > 高中数学 > 题目详情
9.化简:$\frac{5}{6}{a^{\frac{1}{2}}}{b^{-\frac{1}{3}}}×(-3{a^{-\frac{1}{6}}}{b^{-1}})÷{(4{a^{\frac{2}{3}}}{b^{-3}})^{\frac{1}{2}}}$=-$\frac{5}{4}$b${\;}^{\frac{1}{6}}$.

分析 利用有理数指数幂的性质、运算法则求解.

解答 解:$\frac{5}{6}{a^{\frac{1}{2}}}{b^{-\frac{1}{3}}}×(-3{a^{-\frac{1}{6}}}{b^{-1}})÷{(4{a^{\frac{2}{3}}}{b^{-3}})^{\frac{1}{2}}}$
=$\frac{5}{6}×(-3)÷2$${a}^{\frac{1}{2}-\frac{1}{6}-\frac{1}{3}}$${b}^{-\frac{1}{3}-1+\frac{3}{2}}$
=-$\frac{5}{4}$b${\;}^{\frac{1}{6}}$.
故答案为:-$\frac{5}{4}{b}^{\frac{1}{6}}$.

点评 本题考查指数式化简求值,是基础题,解题时要认真审题,注意有理数指数幂的性质、运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知sinθ=$\frac{m-3}{m+5}$,cosθ=$\frac{4-2m}{m+5}$(m≠0),则tanθ=-$\frac{5}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知△ABC中,∠ACB=90°,SA⊥平面ABC,AD⊥SC.求证:
(1)BC⊥平面SAC;
(2)AD⊥平面SBC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图1,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示.
(1)证明:AD⊥BC;
(2)求三棱锥D-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=ex+x-5.,则f(x)的零点所在区间为(  )
A.(1,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设a,b∈R,且a≠2,定义在区间(-b,b)内的函数$f(x)={lg^{\frac{1+ax}{1+2x}}}$是奇函数
(1)求实数b的取值范围;
(2)判断函数f(x)的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列说法中,正确的是(  )
A.已知a,b,m∈R,命题“若am2<bm2,则a<b”为假命题
B.“x>3”是“x>2”的必要不充分条件
C.命题“p或q”为真命题,¬p为真,则命题q为假命题
D.命题“?x0∈R,x02-x0>0”的否定是:“?x∈R,x2-x≤0”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在平行六面体ABCD-A1B1C1中,模与向量$\overrightarrow{{A_1}{B_1}}$的模相等的向量有(  )
A.7个B.3个C.5个D.6个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}-1,x<0}\\{-{x}^{2}+x,x≥0}\end{array}\right.$,则f(f(2))=3.

查看答案和解析>>

同步练习册答案