【题目】已知直线,点,点是平面直角坐标系内的动点,且点到直线的距离是点到点的距离的2倍.记动点的轨迹为曲线.
(1)求曲线的方程;
(2)过点的直线与曲线交于、两点,若(是坐标系原点)的面积为,求直线的方程;
(3)若(2)中过点的直线是倾斜角不为0的任意直线,仍记与曲线的交点为、,设点为线段的中点,直线与直线交于点,求的大小.
【答案】(1);(2)直线或;(3).
【解析】
(1)由题意可得,化简可得曲线的方程.
(2)讨论直线的斜率不存在和存在两种情况.当直线的斜率不存在时,求出的面积,易判断是否成立. 当直线的斜率存在时,设直线,由方程组消元,韦达定理可求弦长,又点到直线的距离,所以的面积,可求值,即可求直线的方程.
(3)讨论直线的斜率不存在和存在两种情况. 当直线的斜率不存在时,易求的值. 当直线的斜率存在时,设直线.由(2)中的结论可得点的坐标,可写出直线的方程,求出点的坐标.最后用向量的方法求的值.
(1)根据题意,可知,,
化简得.
.
(2)因为直线过焦点,故直线与椭圆总交于、两点.
若直线与轴垂直,可算得,,不满足条件.
于是,所求直线的斜率存在.
设直线的斜率为,即.
联立方程组,得(此时恒成立).
,
点到的距离为.
,
化简得,即
解得.
所求直线或(或表示为一般式方程).
(3)若直线的斜率不存在,即垂直轴,
根据椭圆的对称性,知点与点重合,点,此时,有.
若直线的斜率存在,设.
由(2)可得,
.
直线的倾斜角不为零,.
直线.
.
方法1:算得.又直线方向向量为,
且..
.(多想少算)
综上,不论直线的斜率存在与否,总有.
方法2:算得,与的交点为,.
可得向量与的夹角满足,
即,,.
综上,不论直线的斜率存在与否,总有.
科目:高中数学 来源: 题型:
【题目】某商场营销人员进行某商品的市场营销调查时发现,每回馈消费者一定的点数,该商品每天的销量就会发生一定的变化,经过试点统计得到以下表:
反馈点数t | 1 | 2 | 3 | 4 | 5 |
销量(百件)/天 | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(Ⅰ)经分析发现,可用线性回归模型拟合当地该商品销量(千件)与返还点数之间的相关关系.试预测若返回6个点时该商品每天的销量;
(Ⅱ)若节日期间营销部对商品进行新一轮调整.已知某地拟购买该商品的消费群体十分庞大,经营销调研机构对其中的200名消费者的返点数额的心理预期值进行了一个抽样调查,得到如下一份频数表:
返还点数预期值区间 (百分比) | [1,3) | [3,5) | [5,7) | [7,9) | [9,11) | [11,13) |
频数 | 20 | 60 | 60 | 30 | 20 | 10 |
将对返点点数的心理预期值在和的消费者分别定义为“欲望紧缩型”消费者和“欲望膨胀型”消费者,现采用分层抽样的方法从位于这两个区间的30名消费者中随机抽取6名,再从这6人中随机抽取3名进行跟踪调查,求抽出的3人中至少有1名“欲望膨胀型”消费者的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三角形ABC为直角三角形,且,,E,F分别为AB,AC的中点,G,H分别为BE,AF的中点(如图一),现在沿EF将三角形AEF折起至,连接,,GH(如图二).
(1)证明:平面;
(2)当平面平面EFCB时,求异面直线GH与EF所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面为正方形,侧棱底面,为棱上一点,
(1)当为棱中点时,求直线与平面所成角的正弦值;
(2)是否存在点,使二面角的余弦值为?若存在,求的值.若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在直角坐标系中,曲线:(,为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线:.
(1)说明是哪一种曲线,并将的方程化为极坐标方程;
(2)若直线的方程为,设与的交点为,,与的交点为,,若的面积为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点和椭圆. 直线与椭圆交于不同的两点.
(Ⅰ) 求椭圆的离心率;
(Ⅱ) 当时,求的面积;
(Ⅲ)设直线与椭圆的另一个交点为,当为中点时,求的值 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com