精英家教网 > 高中数学 > 题目详情

【题目】已知圆O:x2+y2=1过椭圆C: (a>b>0)的短轴端点,P,Q分别是圆O与椭圆C上任意两点,且线段PQ长度的最大值为3. (Ⅰ)求椭圆C的方程;
(Ⅱ)过点(0,t)作圆O的一条切线交椭圆C于M,N两点,求△OMN的面积的最大值.

【答案】:(Ⅰ)∵圆O过椭圆C的短轴端点,∴b=1, 又∵线段PQ长度的最大值为3,
∴a+1=3,即a=2,
∴椭圆C的标准方程为
(Ⅱ)由题意可设切线MN的方程为y=kx+t,即kx﹣y+t=0,则 ,得k2=t2﹣1.①
联立得方程组 ,消去y整理得(k2+4)x2+2ktx+t2﹣4=0.
其中△=(2kt)2﹣4(k2+4)(t2﹣4)=﹣16t2+16k2+64=48>0,
设M(x1 , y1),N(x2 , y2),则
.②
将①代入②得 ,∴
,等号成立当且仅当 ,即
综上可知:(SOMNmax=1
【解析】(Ⅰ)由圆O过椭圆C的短轴端点b=1,线段PQ长度的最大值为3,a+1=3,a=2,即可求得椭圆方程;(Ⅱ)设直线MN的方程,由点到直线的距离公式,求得k2=t2﹣1,代入椭圆方程,由韦达定理及弦长公式求得丨MN丨,利用三角形的面积公式及基本不等式的性质,即可求得△OMN的面积的最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数 为定义在(﹣∞,0)∪(0,+∞)上的奇函数.
(1)求实数a的值;
(2)判断函数f(x)在区间(a+1,+∞)上的单调性,并用定义法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin+cos , x∈R.
(1)求函数f(x)的最小正周期,并求函数f(x)在x∈[﹣2π,2π]上的单调递增区间;
(2)函数f(x)=sinx(x∈R)的图象经过怎样的平移和伸缩变换可以得到函数f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: 的右焦点为F(1,0),且点(﹣1, )在椭圆C上.
(1)求椭圆C的标准方程;
(2)已知动直线l过点F,且与椭圆C交于A,B两点,试问x轴上是否存在定点Q,使得 恒成立?若存在,求出点Q的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国南宋著名数学家秦九韶发现了从三角形三边求三角形面积的“三斜公式”,设△ABC三个内角A、B、C所对的边分别为a、b、c,面积为S,则“三斜求积”公式为 .若a2sinC=4sinA,(a+c)2=12+b2 , 则用“三斜求积”公式求得△ABC的面积为(
A.
B.2
C.3
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国南宋数学家秦九韶(约公元1202﹣1261年)给出了求n(n∈N*)次多项式anxn+an1xn1+…+a1x+a0 , 当x=x0时的值的一种简捷算法.该算法被后人命名为“秦九韶算法”,例如,可将3次多项式改写为a3x3+a2x2+a1x+a0=((a3x+a2)x+a1)x+a0 , 然后进行求值.运行如图所示的程序框图,能求得多项式( )的值.

A.x4+x3+2x2+3x+4
B.x4+2x3+3x2+4x+5
C.x3+x2+2x+3
D.x3+2x2+3x+4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对函数f(x),如果存在x0≠0使得f(x0)=﹣f(﹣x0),则称(x0 , f(x0))与(﹣x0 , f(﹣x0))为函数图象的一组奇对称点.若f(x)=ex﹣a(e为自然数的底数)存在奇对称点,则实数a的取值范围是(
A.(﹣∞,1)
B.(1,+∞)
C.(e,+∞)
D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x+ |+|x﹣a|(a>0).
(1)证明:f(x)≥2;
(2)若f(3)<5,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在空间直角坐标系中,已知A(3,0,1)和B(1,0,-3),试问
(1)在y轴上是否存在点M,满足
(2)在y轴上是否存在点M,使△MAB为等边三角形?若存在,试求出点M坐标.

查看答案和解析>>

同步练习册答案