精英家教网 > 高中数学 > 题目详情

【题目】图1,平行四边形中, ,现将沿折起,得到三棱锥(如图2),且,点为侧棱的中点.

(1)求证: 平面

(2)求三棱锥的体积;

(3)在的角平分线上是否存在点,使得平面?若存在,求的长;若不存在,请说明理由.

【答案】(1)见解析;(2);(3).

【解析】试题分析:(Ⅰ)由平面几何知识先证明,再由线面垂直的判定的定理可得平面,从而得,进而可得平面,最后由由线面垂直的判定的定理可得结论;(Ⅱ)由等积变换可得,进而可得结果;(Ⅱ)取中点,连接并延长至点,使,连接 ,先证四边形为平行四边形,则有,利用平面几何知识可得结果.

试题解析:(Ⅰ)证明:在平行四边形中,有,又因为为侧棱的中点,

所以

又因为 ,且,所以平面.

又因为平面,所以

因为

所以平面

又因为平面

所以平面平面

(Ⅱ)解:因为 平面,所以是三棱锥的高,

又因为 , ,所以

所以有 .

(Ⅲ)解:取中点,连接并延长至点,使,连接 .

因为,所以射线是角的角分线.

又因为点是的中点,所以

因为平面平面

所以∥平面.

因为互相平分,

故四边形为平行四边形,有.

又因为,所以有

又因为,故.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,且点在椭圆上.

求椭圆的标准方程;

已知动直线过点且与椭圆交于两点.试问轴上是否存在定点,使得恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(数学文卷·2017届湖北省黄冈市高三上学期期末考试第16题) “中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”. “中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列,则此数列的项数为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用随机模拟方法求函数 x轴和直线x=1围成的图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 ,已知曲线在点处的切线与直线平行.

(Ⅰ)若方程内存在唯一的根,求出的值;

(Ⅱ)设函数表示中的较小值),求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数y=f(x)在区间[0,1]上的图象是连续不断的一条曲线,且恒有0f(x)1,可以用随机模拟方法近似计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S.先产生两组(每组N)0~1区间上的均匀随机数x1,x2,…,xNy1,y2,…,yN,由此得到N个点(xi,yi)(i=1,2,…,N).再数出其中满足yif(xi)(i=1,2,…,N)的点数N1,那么由随机模拟方法可得S的近似值为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若一个三角形的平行投影仍是三角形则下列命题

①三角形的高线的平行投影一定是这个三角形的平行投影的高线

②三角形的中线的平行投影一定是这个三角形的平行投影的中线

③三角形的角平分线的平行投影一定是这个三角形的平行投影的角平分线

④三角形的中位线的平行投影一定是这个三角形的平行投影的中位线.

其中正确的命题有 (   )

A. ①② B. ②③

C. ③④ D. ②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的焦距为,且经过点

(Ⅰ)求椭圆的方程;

(Ⅱ)是椭圆上两点,线段的垂直平分线经过,求面积的最大值(为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校在高一年级学生中,对自然科学类、社会科学类校本选修课程的选课意向进行调查.现从高一年级学生中随机抽取名学生,其中男生名;在这名学生中选择社会科学类的男生、女生均为名.

(1)试问:从高一年级学生中随机抽取人,抽到男生的概率约为多少?

(2)根据抽取的名学生的调查结果,完成下列列联表.并判断能否在犯错误的概率不超过的前提下认为科类的选择与性别有关?

选择自然科学类

选择社会科学类

合计

男生

女生

合计

附: ,其中.

查看答案和解析>>

同步练习册答案