精英家教网 > 高中数学 > 题目详情
已知圆O:x2+y2=4,点A(
3
,0),以线段AB为直径的圆内切于圆O,记点B的轨迹为Γ.
(Ⅰ)求曲线Γ的方程;
(Ⅱ)直线AB交圆O于C,D两点,当B为CD的中点时,求直线AB的方程.
考点:轨迹方程,直线与圆锥曲线的关系
专题:圆锥曲线的定义、性质与方程
分析:(Ⅰ)设AB的中点为M,切点为N,连OM,MN,通过|OM|+|MN|=|ON|=2,推出|OM|+|MN|=4.说明点B的轨迹是以A′,A为焦点,长轴长为4的椭圆.然后求解曲线Γ的方程.
(Ⅱ)推出OB⊥CD,设B(x0,y0),然后利用直线与椭圆方程联立求出B的坐标,即可求解直线AB的方程.
解答: 解:(Ⅰ)设AB的中点为M,切点为N,连OM,MN,则|OM|+|MN|=|ON|=2,取A关于y轴的对称点A′,连A′B,
故|A′B|+|AB|=2(|OM|+|MN|)=4.
所以点B的轨迹是以A′,A为焦点,长轴长为4的椭圆.
其中,a=2,c=
3
,b=1,则曲线Γ的方程为
x2
4
+y2=1. 

(Ⅱ)因为B为CD的中点,所以OB⊥CD,
OB
AB
.设B(x0,y0),
则x0(x0-
3
)+y
 
2
0
=0. 
x
2
0
4
+y
 
2
0
=1 
解得x0=
2
3
,y0
2
3

则kOB
2
2
,kAB=?
2

则直线AB的方程为y=±
2
(x-
3
),
即x-y-
6
=0或
2
x+y-
6
=0.
点评:本题考查轨迹方程的求法,判断轨迹的椭圆简化解题的过程,考查直线与椭圆的位置关系的应用,考查分析问题解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的渐近线与圆(x-2)2+y2=1相切,则双曲线的离心率为(  )
A、
4
3
B、
3
2
C、
2
5
5
D、
2
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

现有4枚完全相同的硬币,每个硬币都分正反两面,把4枚硬币摆成一摞,满足相邻两枚硬币的正面与正面不相对,不同的摆法有
 
 种(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

设a=∫12(3x2-2x)dx,则二项式(ax2-
1
x
6展开式中的第6项的系数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD的底面为棱形,PA⊥底面ABCD,∠ABC=60°.E,F,M分别是BC,CD,PB的中点.
(1)证明:AB⊥MF;
(2)若PA=BA,求二面角E-MF-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高一数学兴趣小组开展竞赛前摸底考试.甲、乙两人参加了5次考试,成绩如下:
第一次第二次第三次第四次第五次
甲的成绩8287868090
乙的成绩7590917495
(Ⅰ)若从甲、乙两人中选出1人参加比赛,你认为选谁合适?写出你认为合适的人选并说明理由;
(Ⅱ)若同一次考试成绩之差的绝对值不超过5分,则称该次考试两人“水平相当”.由上述5次摸底考试成绩统计,任意抽查两次摸底考试,求恰有一次摸底考试两人“水平相当”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x+1|-b|2x-4|(a,b∈R)
(Ⅰ)当a=1,b=
1
2
时,解不等式f(x)≤0
(Ⅱ)当b=1时,若函数f(x)既存在最小值,也存在最大值.求所有满足条件的实数a的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x0∈(0,6),按照如图程序框图运行后,能输出x0的概率是(  )
A、
1
2
B、
2
3
C、
3
4
D、
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c是三条不同的直线,且a?平面α,b?平面β,α∩β=c,给出下列命题:
①若a与b是异面直线,则c至少与a、b中一条相交;
②若a不垂直于c,则a与b一定不垂直;
③若a∥b,则必有a∥c;
④若a⊥b,a⊥c,则必有α⊥β;其中正确的命题的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

同步练习册答案