精英家教网 > 高中数学 > 题目详情
7.某班级原有一张周一到周五的值日表,五位班干部每人值一天,现将值日表进行调整,要求原周一和周五的两人都不值这两天,周二至周四的这三人都不值自己原来的日期,则不同的调整方法种数是24(用数字作答).

分析 由题意,先安排原周一和周五的两人,有A32=6种,再安排周二至周四的这三人中,该天没有被值日的人,有A21=2种,剩余2人,全排有A22=2种,利用乘法原理可得结论.

解答 解:由题意,先安排原周一和周五的两人,有A32=6种,
再安排周二至周四的这三人中,该天没有被值日的人,有A21=2种,剩余2人,
全排有A22=2种,共有6×2×2=24种,
故答案为24.

点评 本题考查排列知识的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.孝汉城铁于12月1日开通,C5302、C5321两列车乘务组工作人员为了了解乘坐本次列车的乘客每月需求情况,分别在两个车次各随机抽取了100名旅客进行调查,下面是根据调查结果,绘制了乘车次数的频率分布直方图和频数分布表.
C5321次乘客月乘坐次数频数分布表
乘车次数分组频数
[0,5)15
[5,10)20
[10,15)25
[15,20)24
[20,25)11
[25,30]5
(1)若将频率视为概率,月乘车次数不低于15次的称之为“老乘客”,试问:哪一车次的“老乘客”较多,简要说明理由.
(2)已知在C5321次列车随机抽到的50岁以上人员有35名,其中有10名是“老乘客”,由条件完成下面2×2列联表,并根据资料判断,是否有90%的把握认为年龄有乘车次数有关,说明理由.
老乘客新乘客合计
50岁以上102535          
50岁以下303565
合计4060100
附:随机变量${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d为样本总量)
P(k2≥k00.250.150.100.050.025
k01.3232.0722.7063.8415.024

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\sqrt{1-x}$+$\sqrt{x+3}$的最大值为M,最小值为m,则$\frac{m}{M}$的值为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{5}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设实数a、b均为区间(0,1)内的随机数,则关于x的不等式a2x2+bx+1<0有实数解的概率为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}{(a+1)x-2a,x<3}\\{lo{g}_{3}x,x≥3}\end{array}\right.$的值域为R,则实数a的范围是(  )
A.[-1,1]B.(-1,1]C.(-1,+∞)D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,△ABC中,AB=BC,∠ABC=120°,若以A,B为焦点的双曲线的渐近线经过点C,则该双曲线的离心率为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{3}$C.$\frac{\sqrt{5}}{2}$D.$\frac{\sqrt{7}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$\left\{\begin{array}{l}{x-2m,x≥m}\\{-x,-m<x<m}\\{x+2m,x≤-m}\end{array}\right.$,其中m>0,若对任意实数x,都有f(x)<f(x+1)成立,则实数m的取值范围为(0,$\frac{1}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设全集U={1,2,3,4,5},集合A={1,2},B={x|x2-5x+6=0},则A∩(∁UB)=(  )
A.{4,5}B.{2,3}C.{1}D.{4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知某三棱锥的三视图(单位:cm)如图所示,则此三棱锥的体积是2cm3,表面积是5+3$\sqrt{2}$+$\sqrt{13}$cm2

查看答案和解析>>

同步练习册答案