(1)恰好有两家煤矿必须整改的概率;
(2)至少关闭一家煤矿的概率.
解析:利用独立重复试验概率公式.
(1)每家煤矿必须整改的概率是1-0.5,且每家煤矿是否整改是相互独立的.所以恰好有两家煤矿必须整改的概率是P1=×(1-0.5)2×0.53==0.31.
(2)某煤矿被关闭,即该煤矿第一次安检不合格,整改后经复查仍不合格,所以该煤矿被关闭的概率是P2=(1-0.5)×(1-0.8)=0.1,从而该煤矿不被关闭的概率是0.9.由题意,每家煤矿是否被关闭是相互独立的,故至少关闭一家煤矿的概率是P3=1-0.95=0.41.
小结:①独立重复试验是同一试验的多次重复,每次试验结果的概率不受其他试验的概率的影响,每次试验有两个可能结果:成功或失败.②在n次独立重复试验中事件A恰好发生k次的概率为pk(1-p)n-k,这里k可以取0,1,2,…,n.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
(06年湖南卷理)(12分)
某安全生产监督部门对5家小型煤矿进行安全检查(简称安检), 若安检不合格, 则必须整改. 若整改后经复查仍不合格, 则强制关闭. 设每家煤矿安检是否合格是相互独立的, 且每家煤矿整改前合格的概率是, 整改后安检合格的概率是,
计算(结果精确到);
(Ⅰ) 恰好有两家煤矿必须整改的概率;
(Ⅱ) 平均有多少家煤矿必须整改;
(Ⅲ) 至少关闭一家煤矿的概率 .
查看答案和解析>>
科目:高中数学 来源: 题型:
(06年湖南卷文)(12分)
某安全生产监督部门对5家小型煤矿进行安全检查(简称安检). 若安检不合格,则必须整改. 若整改后经复查仍不合格,则强制关闭. 设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8,计算(结果精确到0.01):
(Ⅰ)恰好有两家煤矿必须整改的概率;
(Ⅱ)某煤矿不被关闭的概率;
(Ⅲ)至少关闭一家煤矿的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(1)恰好有两家煤矿必须整改的概率;
(2)平均有多少家煤矿必须整改;
(3)至少关闭一家煤矿的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
某安全生产监督部门对5家小型煤矿进行安全检查(简称安检).若安检不合格,则必须进行整改.若整改后经复查仍不合格,则强行关闭.设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5, 整改后安检合格的概率是0.8,计算(结果精确到0.01):
(Ⅰ)恰好有两家煤矿必须整改的概率;
(Ⅱ)平均有多少家煤矿必须整改;
(Ⅲ)至少关闭一家煤矿的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com