精英家教网 > 高中数学 > 题目详情
3.函数f(x)=log2x-$\frac{1}{x-1}$的零点个数是(  )
A.0B.1C.2D.3

分析 函数f(x)=log2x-$\frac{1}{x-1}$的零点个数?y=log2x与y=$\frac{1}{x-1}$的图象有两个交点个数.画出图象即可.

解答 解:如图所示,可知y=log2x与y=$\frac{1}{x-1}$的图象有两个交点.

函数f(x)=log2x-$\frac{1}{x-1}$的零点个数是2
故选:C.

点评 本题考查了函数的零点,及函数与方程的思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{\begin{array}{l}{(x+1)^{2},x≤0}\\{|lo{g}_{2}x|,x>0}\end{array}\right.$,若方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则x1+x2+$\frac{1}{{x}_{3}{x}_{4}}$的值为(  )
A.0B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(1,1),$\overrightarrow{c}$=(-1,1).
(Ⅰ)λ为何值时,$\overrightarrow{a}$+λ$\overrightarrow{b}$与$\overrightarrow{a}$垂直?
(Ⅱ)若(m$\overrightarrow{a}$+n$\overrightarrow{b}$)∥$\overrightarrow{c}$,求$\frac{m}{n}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数y=3cos(x+φ)-1的图象关于直线x=$\frac{π}{3}$对称,其中φ∈[0,π],则φ的值为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=sinx(2$\sqrt{3}$cosx-sinx)+1
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)讨论f(x)在区间[-$\frac{π}{4}$,$\frac{π}{4}$]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.定义行列式运算:$|\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}|$=a1a4-a2a3,若将函数f(x)=$|\begin{array}{l}{sinx}&{cosx}\\{1}&{\sqrt{3}}\end{array}|$的图象向右平移φ(φ>0)个单位后,所得图象对应的函数为奇函数,则m的最小值是(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=log2$\frac{x+a}{x-1}$(a>0)为奇函数.
(1)求实数a的值;
(2)若x∈(1,4],f(x)>log2$\frac{m}{x-1}$恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知如表为“五点法”绘制函数f(x)=Asin(ωx+φ)图象时的五个关键点的坐标(其中A>0,ω>0,|φ|<π)
x-$\frac{π}{6}$$\frac{π}{12}$$\frac{π}{3}$$\frac{7π}{12}$$\frac{5π}{6}$
f(x)020-20
(Ⅰ)请写出函数f(x)的最小正周期和解析式;
(Ⅱ)求函数f(x)的单调递减区间;
(Ⅲ)求函数f(x)在区间[0,$\frac{π}{2}$]上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,若$|{\overrightarrow{AB}}|=3,|{\overrightarrow{AC}}|=4$,∠BAC=30°,则$\overrightarrow{AB}•\overrightarrow{AC}$=6$\sqrt{3}$.

查看答案和解析>>

同步练习册答案