【题目】已知双曲线.
(1)求以右焦点为圆心,与双曲线的渐近线相切的圆的方程;
(2)若经过点的直线与双曲线的右支交于不同两点、,求线段的中垂线在轴上截距的取值范围.
科目:高中数学 来源: 题型:
【题目】已知中心在原点,焦点在轴上的椭圆的离心率为,且经过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在过点的直线与相交于不同的两点,满足?
若存在,求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校艺术节对同一类的,,,四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:
甲说:“是或作品获得一等奖”;
乙说:“作品获得一等奖”;
丙说:“,两项作品未获得一等奖”;
丁说:“是作品获得一等奖”.
若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列中,前项和为,若对任意的,均有(是常数,且)成立,则称数列为“数列”.
(1)若数列为“数列”,求数列的前项和;
(2)若数列为“数列”,且为整数,试问:是否存在数列,使得对一切,恒成立?如果存在,求出这样数列的的所有可能值,如果不存在,请说明理由;
(3)若数列为“数列”,且,证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[2018·沧州质检]对于椭圆,有如下性质:若点是椭圆上的点,则椭圆在该点处的切线方程为.利用此结论解答下列问题.点是椭圆上的点,并且椭圆在点处的切线斜率为.
(1)求椭圆的标准方程;
(2)若动点在直线上,经过点的直线,与椭圆相切,切点分别为,.求证:直线必经过一定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】盒子中装有四张大小形状均相同的卡片,卡片上分别标有数其中是虚数单位.称“从盒中随机抽取一张,记下卡片上的数后并放回”为一次试验(设每次试验的结果互不影响).
(1)求事件 “在一次试验中,得到的数为虚数”的概率与事件 “在四次试验中,
至少有两次得到虚数” 的概率;
(2)在两次试验中,记两次得到的数分别为,求随机变量的分布列与数学期望
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在原点,焦点在轴上,短轴长和焦距都等于2, 是椭圆上的一点,且在第一象限内,过且斜率等于的直线与椭圆交于另一点,点关于原点的对称点为.
(Ⅰ)证明:直线的斜率为定值;
(Ⅱ)求面积的最大值,并求此时直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com