精英家教网 > 高中数学 > 题目详情

【题目】(2015·四川)如图,ABCD为平面四边形ABCD的四个内角.

(1)证明:tan=
(2)若A+C=180°, AB=6, BC=3, CD=4, AD=5, 求tan+tan+tan+tan的值.

【答案】
(1)

见解析。


(2)


【解析】(1)tan===.
(2)由A+C=180°, 得C=180°-A, D=180°-B,由(1), 有tan+tan+tan+tan=+++=连接BD, 在△ABD中,有BD2=AB2+AD2-2AB·ADcosA. 在△ABD中,有BD2=BC2+CD2-2BC·CDcosC.
所以AB2+AD2-2AB·ADcosA=BC2+CD2+2BC·CDcosA. 则cosA===.
于是sinA===,连接AC, 同理可得cosB===, 于是sinB===, 所以tan+tan+tan+tan==+=.
【考点精析】本题主要考查了余弦定理的定义的相关知识点,需要掌握余弦定理:;;才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C: 的左右焦点与其短轴的一个端点是正三角形的三个顶点,点D 在椭圆C上,直线l:y=kx+m与椭圆C相交于A、P两点,与x轴、y轴分别相交于点N和M,且PM=MN,点Q是点P关于x轴的对称点,QM的延长线交椭圆于点B,过点A、B分别作x轴的垂涎,垂足分别为A1、B1
(1)求椭圆C的方程;
(2)是否存在直线l,使得点N平分线段A1B1?若存在,求求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·新课标I卷)在直角坐标系xoy中,曲线Cy=与直线y=kx+a(a>0)交与M,N两点,
(1)当k=0时,分别求C在点MN处的切线方程;
(2)y轴上是否存在点P , 使得当k变动时,总有∠OPM=∠OPN?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·四川)一辆小客车上有5个座位,其座位号为1,2,3,4,5,乘客P1P2P3P4P5的座位号分别为1,2,3,4,5,他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.
(1)(I)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)  

乘客

P1

P2

P3

P4

P5

座位号

3

2

1

4

5

3

2

4

5

1


(2)(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P1坐到5号座位的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·四川)如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,动点M在线段PQ上,E、F分别为AB、BC的中点。设异面直线EM与AF所成的角为,则cos的最大值为 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·陕西)如图1,在直角梯形ABCD中,AD∥BC,BAD=,AB=BC=1,
AD=2, E是AD的中点,0是AC与BE的交点.将△ABE沿BE折起到△A1BE的位置,如图2.

(1)证明:CD⊥平面A1OC
(2)若平面A1BE⊥平面BCDE, 四棱锥A1-BCDE的体积为36,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·陕西)“sin=cos”是“cos2=0”的( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·湖南)如图,直三棱柱ABC-A1B1C1的底面是边长为2的正三角形,E,F分别是BC,CC1的中点。

(1)证明:平面AEF⊥平面B1BCC1
(2)若直线AC1与平面AA1BB1所成的角为45°,求三棱锥F-AEC的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为
(Ⅰ)求频率分布图中a的值;
(Ⅱ)估计该企业的职工对该部门评分不低于80的概率;
(Ⅲ)从评分在的受访职工中,随机抽取2人,求此2人评分都在的概率。

查看答案和解析>>

同步练习册答案