精英家教网 > 高中数学 > 题目详情
1.已知m>0,n>0,向量$\overrightarrow{a}$=(m,1),$\overrightarrow{b}$=(1,n-1),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则$\frac{1}{m}+\frac{2}{n}$的最小值是(  )
A.$2\sqrt{2}$B.2C.$3+2\sqrt{2}$D.$4+2\sqrt{2}$

分析 利用向量的数量积为0,求出m,n的方程,然后利用基本不等式求解表达式的最小值即可.

解答 解:m>0,n>0,向量$\overrightarrow{a}$=(m,1),$\overrightarrow{b}$=(1,n-1),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,
可得:m+n=1,
则$\frac{1}{m}+\frac{2}{n}$=($\frac{1}{m}+\frac{2}{n}$)(m+n)=3+$\frac{n}{m}$+$\frac{2m}{n}$≥3+2$\sqrt{\frac{n}{m}×\frac{2m}{n}}$=3+2$\sqrt{2}$.
当且仅当:m+n=1,n=$\sqrt{2}m$时,表达式取得最小值3+2$\sqrt{2}$.
故选:C.

点评 本题考查向量的数量积以及基本不等式在最值中的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知关于x的函数f(x)=x2-2$\sqrt{b}x+{a^2}$,若点(a,b)是区域$\left\{\begin{array}{l}x+y-6≤0\\ x>0\\ y>0\end{array}$内的随机点,则函数f(x)在R上有零点的概率为(  )
A.$\frac{2}{3}$B.$\frac{11}{27}$C.$\frac{1}{3}$D.$\frac{5}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知log32=a,log27=b,则log37等于(  )
A.a+bB.a-bC.abD.$\frac{a}{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.用一张4cm×8cm的矩形硬纸卷成圆柱的侧面,则圆柱轴截面的面积为$\frac{32}{π}$cm2(接头忽略不计).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.一个多面体的三视图和直观图如图所示,其中M,N,P分别是AB,SC,SD的中点.
(1)求证:AP∥平面SMC;
(2)求三棱锥BNMC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合$M=\{x|\frac{x}{x-2}≤0\}$,N={y|y=-x2+3,x∈R},则M∩N=(  )
A.(0,2)B.(2,3)C.[0,2)D.(0,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知抛物线y2=2x,点P为抛物线上任意一点,P在y轴上的射影为Q,点M(2,3),则PQ与PM的长度之和的最小值为$\frac{3\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若2<a<3,化简$\root{3}{{{{(2-a)}^3}}}+\root{4}{{{{(3-a)}^4}}}$的结果是(  )
A.5-2aB.2a-5C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx-kx+1.
(1)求函数f(x)的单调区间;
(2)若f(x)≤0恒成立,试确定实数k的取值范围;
(3)证明:$\frac{ln2}{3}+\frac{ln3}{4}+…+\frac{lnn}{n+1}<\frac{{n({n-1})}}{4}({n∈{N_+},n>1})$.

查看答案和解析>>

同步练习册答案