精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=ex-ln(x+a)(a∈R)有唯一的零点x0,则(  )
A.-1<x0<-$\frac{1}{2}$B.-$\frac{1}{2}$<x0<-$\frac{1}{4}$C.-$\frac{1}{4}$<x0<0D.0<x0<$\frac{1}{2}$

分析 利用函数的零点以及方程的根的关系,通过函数的导数,二次导函数判断函数的单调性,利用函数的零点判定定理,推出结果即可.

解答 解:函数f(x)=ex-ln(x+a)(a∈R),则x>-a,
可得f′(x)=ex-$\frac{1}{x+a}$,f′′(x)=ex+$\frac{1}{(x+a)^{2}}$恒大于0,
f′(x)是增函数,令f′(x0)=0,则${e}^{{x}_{0}}=\frac{1}{{x}_{0}+a}$,有唯一解时,
a=$\frac{1}{{e}^{{x}_{0}}}-{x}_{0}$,代入f(x)可得:
f(x0)=${e}^{{x}_{0}}-ln({x}_{0}+a)$=${e}^{{x}_{0}}-ln(\frac{1}{{e}^{{x}_{0}}})$=${e}^{{x}_{0}}+{x}_{0}$,
由于f(x0)是增函数,
f(-1)≈-0.63,f($-\frac{1}{2}$)≈0.11
所以f(x0)=0时,-1$<{x}_{0}<-\frac{1}{2}$.
故选:A.

点评 本题考查函数的导数的应用,函数的单调性以及函数的零点判定定理的应用,考查转化是形成以及计算能力.难度比较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.函数f(x)=x2-2kx-8在区间[0,14]上为增函数,则实数k的取值范围为(  )
A.(-∞,0)B.(-∞,0]C.(0,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.某销售代理商主要代理销售新京报、北京晨报、北京青年报三种报刊.代理商统计了过去连续100天的销售情况,数据如下:
20002100220023002400
新京报1015303510
北京晨报182040202
北京青年报352520155
三种报刊中,日平均销售量最大的报刊是新京报;如果每份北京晨报的销售利润分别为新京报的1.5倍,北京青年报的1.2倍,那么三种报刊日平均销售利润最大的报刊是北京晨报.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知命题p:?x∈(1,+∞),log3(x+2)-$\frac{2}{{2}^{x}}$>0,则下列叙述正确的是(  )
A.¬p为:?x∈(1,+∞),log3(x+2)-$\frac{2}{2^x}$≤0B.¬p为:?x∈(1,+∞),log3(x+2)-$\frac{2}{2^x}$<0
C.¬p为:?x∈(-∞,1],log3(x+2)-$\frac{2}{2^x}$≤0D.¬p是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)是定义在[-1,1]上的减函数,若f(m-1)>f(2m-1),则实数m的取值范围是(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若变量x,y满足$\left\{\begin{array}{l}{x+y≤-1}\\{2x-3y≤9}\\{x≥0}\end{array}\right.$,则x2+y2的最小值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知A(-1,0),B(1,0),动点M满足∠AMB=2θ,|$\overrightarrow{AM}$|•|$\overrightarrow{BM}$|•cos2θ=3,设M的轨迹为曲线C.
(1)求曲线C的方程;
(2)过A的直线l1与曲线C交于E、F两点,过B与l1平行的直线l2与曲线C交于G、H两点,求四边形EFGH的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=|x2-2x-3|,则f(x)在(-1,+∞)上的减区间为[1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.盒中有1个黑球,9个白球,它们除颜色不同外,其他方面没什么差别,现由10人依次摸出1个球后放回,设第1个人摸出黑球的概率是P1,第10个人摸出黑球的概率是P10,则(  )
A.P10=$\frac{1}{10}$P1B.P10=$\frac{1}{9}$P1C.P10=0D.P10=P1

查看答案和解析>>

同步练习册答案