【题目】关于x的不等式ax2+bx+c<0的解集为{x|x<﹣2或x>﹣ },则关于x的不等式ax2﹣bx+c>0的解集为 .
【答案】
【解析】解:∵关于x的不等式ax2+bx+c<0的解集为{x|x<﹣2或x>﹣ }, ∴a<0,且方程ax2+bx+c=0的根为x=﹣2或x=﹣ ,
由根与系数的关系式得:
﹣2+(﹣ )=﹣ ,(﹣2)×(﹣ )= ,
即 = , =1;
又关于x的不等式ax2﹣bx+c>0可化为
x2﹣ x+ <0,
即x2﹣ x+1<0,
解不等式,得 <x<2,
∴不等式ax2﹣bx+c>0的解集为{x| <x<2};
所以答案是:{x| <x<2}.
【考点精析】根据题目的已知条件,利用解一元二次不等式的相关知识可以得到问题的答案,需要掌握求一元二次不等式解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边.
科目:高中数学 来源: 题型:
【题目】现有1名女教师和2名男教师参加说题比赛,共有2道备选题目,若每位选手从中有放回地随机选出一道题进行说题,其中恰有一男一女抽到同一道题的概率为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知一组数据x1 , x2 , x3 , x4 , x5的平均数是2,方差是 ,那么另一组数据2x1﹣1,2x2﹣1,2x3﹣1,2x4﹣1,2x5﹣1的平均数,方差分别是( )
A.3,
B.3,
C.4,
D.4,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知 =( sinx,m+cosx), =(cosx,﹣m+cosx),且f(x)=
(1)求函数f(x)的解析式;
(2)当x∈ 时,f(x)的最小值是﹣4,求此时函数f(x)的最大值,并求出相应的x的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解甲、乙两个工厂生产的轮胎的宽度是否达标,分别从两厂随机各选取了10个轮胎,将每个轮胎的宽度(单位:mm)记录下来并绘制出如下的折线图:
(1)分别计算甲、乙两厂提供的10个轮胎宽度的平均值;
(2)轮胎的宽度在内,则称这个轮胎是标准轮胎.试比较甲、乙两厂分别提供的10个轮胎中所有标准轮胎宽度的方差的大小,根据两厂的标准轮胎宽度的平均水平及其波动情况,判断这两个工厂哪个厂的轮胎相对更好?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】原命题:“, 为两个实数,若,则, 中至少有一个不小于1”,下列说法错误的是( )
A. 逆命题为:若, 中至少有一个不小于1,则,为假命题
B. 否命题为:若,则, 都小于1,为假命题
C. 逆否命题为:若, 都小于1,则,为真命题
D. “”是“, 中至少有一个不小于1”的必要不充分条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和为Sn , 设an是Sn与2的等差中项,数列{bn}中,b1=1,点P(bn , bn+1)在直线y=x+2上.
(1)求an , bn;
(2)若数列{bn}的前n项和为Bn , 比较 + +…+ 与1的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com