【题目】如图所示,在四棱锥中,底面是且边长为的菱形,侧面为正三角形,其所在平面垂直于底面.
(1)若为边的中点,求证:平面.
(2)求证:.
(3)若为边的中点,能否在上找出一点,使平面 平面?
科目:高中数学 来源: 题型:
【题目】已知点为抛物线的焦点,点、在抛物线上,且、、三点共线.若圆的直径为.
(1)求抛物线的标准方程;
(2)过点的直线与抛物线交于点,,分别过、两点作抛物线的切线,,证明直线,的交点在定直线上,并求出该直线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中学为研究学生的身体素质与体育锻炼时间的关系,对该校200名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)
平均每天锻炼的时间/分钟 | ||||||
总人数 | 20 | 36 | 44 | 50 | 40 | 10 |
将学生日均体育锻炼时间在的学生评价为“锻炼达标”.
(1)请根据上述表格中的统计数据填写下面的列联表;
锻炼不达标 | 锻炼达标 | 合计 | |
男 | |||
女 | 20 | 110 | |
合计 |
并通过计算判断,是否能在犯错误的概率不超过0.025的前提下认为“锻炼达标”与性别有关?
(2)在“锻炼达标”的学生中,按男女用分层抽样方法抽出10人,进行体育锻炼体会交流,
(i)求这10人中,男生、女生各有多少人?
(ii)从参加体会交流的10人中,随机选出2人作重点发言,记这2人中女生的人数为,求的分布列和数学期望.
参考公式:,其中.
临界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】正三棱柱(底面是正三角形,侧棱垂直底面)的各条棱长均相等,为的中点,、分别是、上的动点(含端点),且满足.当、运动时,下列结论中正确的个数是( )
①平面平面;
②三棱锥的体积为定值;
③可能为直角三角形;
④平面与平面所成的锐二面角范围为.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D﹣ABC,如图2所示.
(Ⅰ)求证:BC⊥平面ACD;
(Ⅱ)求几何体D﹣ABC的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平面四边形ABCD中,E,F是AD,BD中点,,,将沿对角线BD折起至,使平面平面BCD,则四面体中,下列结论不正确的是( )
A.平面
B.异面直线CD与所成的角为
C.异面直线EF与所成的角为
D.直线与平面BCD所成的角为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】张强同学进行三次定点投篮测试,已知第一次投篮命中的概率为,第二次投篮命中的概率为,前两次投篮是否命中相互之间没有影响.第三次投篮受到前两次结果的影响,如果前两次投篮至少命中一次,则第三次投篮命中的概率为,否则为.
(1)求张强同学三次投篮至少命中一次的概率;
(2)记张强同学三次投篮命中的次数为随机变量,求的概率分布及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(为自然对数的底数),为的导函数,且.
(1)求实数的值;
(2)若函数在处的切线经过点,求函数的极值;
(3)若关于的不等式对于任意的恒成立,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com