精英家教网 > 高中数学 > 题目详情

【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了日至日的每天昼夜温差与实验室每天每颗种子中的发芽数,得到如下资料:

日期

温差

发芽数(颗)

该农科所确定的研究方案是:先从这组数据中选取组,用剩下的组数据求线性回归方程,再对被选取的组数据进行检验.

(1)求选取的组数据恰好是不相邻两天数据的概率;

(2)若选取的是日与日的数据,请根据日至日的数据求出关于的线性回归方程

(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过颗.则认为得到的线性回归方程是可靠的.试问(2)中所得到的线性回归方程是可靠的吗?

附:回归直线的斜率和截距的最小二乘估计公式分别为:

.

【答案】(1);(2);(3)见解析

【解析】分析:(1)根据题意列举出从5组数据中选取2组数据共有10种情况,每种情况都是可能出现的,满足条件的事件包括的基本事件有6种.根据等可能事件的概率做出结果.
(2)根据所给的数据,先求出即求出本组数据的样本中心点,根据最小二乘法求出线性回归方程的系数,写出线性回归方程.
(3)根据估计数据与所选出的检验数据的误差均不超过2颗,就认为得到的线性回归方程是可靠的,根据求得的结果和所给的数据进行比较,得到所求的方程是可靠的.

详解:

(1)设“选取的2组数据恰好是不相邻两天的数据”为事件A.

从5组数据中选取2组数据共有10种情况:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),其中数据为12月份的日期数.

每种情况都是等可能出现的,事件A包括的基本事件有6种.

.∴选取的2组数据恰好是不相邻两天数据的概率是.

(2)由数据可得.

.

∴y关于x的线性回归方程为.

(3)当x=10时,,|22-23|<2;

同理x=8,|17-16|<2.

∴(2)中所得到的线性回归方程是可靠的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙两名同学参加2018年高考,根据高三年级一年来的各种大、中、小型数学模拟考试总结出来的数据显示,甲、乙两人能考140分以上的概率分别为,甲、乙两人是否考140分以上相互独立,则预估这两个人在2018年高考中恰有一人数学考140 分以上的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费 (单位:千元)对年销售量 (单位:)和年利润(单位:千元)的影响,对近8年的年宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.

46.6

563

6.8

298.8

1.6

1469

108.8

表中

(1)根据散点图判断,哪一个适宜作为年销售量关于年宣传费的回归方程类型?(给出判断即可,不必说明理由)

(2)根据(1)的判断结果及表中数据,建立关于的回归方程;

(3)以知这种产品的年利率的关系为.根据(2)的结果求年宣传费时,年销售量及年利润的预报值是多少?

附:对于一组数据……,其回归线的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x﹣1)的图象关于点(1,0)对称,且当x∈(﹣∞,0)时,f(x)+xf′(x)<0成立(其中f′(x)是f(x)的导函数),若a=(30.3)f(30.3),b=(logπ3)f(logπ3),c=(log3 )f(log3 ),则 a,b,c的大小关系是(
A.a>b>c
B.c>a>b
C.c>b>a
D.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双曲线 =1(a>0,b>0)的左、右焦点分别为F1、F2离心率为e.过F2的直线与双曲线的右支交于A、B两点,若△F1AB是以A为直角顶点的等腰直角三角形,则e2的值是(
A.1+2
B.3+2
C.4﹣2
D.5﹣2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=ex﹣2x﹣a在R上有两个零点,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,侧面PAB⊥底面ABCD,且∠PAB=∠ABC=90°,AD∥BC,PA=AB=BC=2AD,E是PC的中点.
(Ⅰ)求证:DE⊥平面PBC;
(Ⅱ)求二面角A﹣PD﹣E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一年级开设五门选修课,每位同学须彼此独立地从中选择两门课程,已知甲同学必选课程,乙同学不选课程,丙同学从五门课程中随机任选两门.

(1)求甲同学与乙同学恰有一门课程相同的概率;

(2)设为甲、乙、丙三位同学中选课程的人数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的部分图像如图所示.

(1)求函数的解析式;

(2)求图中的值及函数的单调递减区间;

(3)若将的图象向左平移个单位后,得到的图像关于直线对称,求的最小值.

查看答案和解析>>

同步练习册答案