ÉèµÈ±ÈÊýÁÐ{an}µÄÇ°nÏîµÄºÍΪSn£¬¹«±ÈΪq£¨q¡Ù1£©£®
£¨1£©ÈôS4£¬S12£¬S8³ÉµÈ²îÊýÁУ¬ÇóÖ¤£ºa10£¬a18£¬a14³ÉµÈ²îÊýÁУ»
£¨2£©ÈôSm£¬Sk£¬St£¨m£¬k£¬tΪ»¥²»ÏàµÈµÄÕýÕûÊý£©³ÉµÈ²îÊýÁУ¬ÊÔÎÊÊýÁÐ{an}ÖÐÊÇ·ñ´æÔÚ²»Í¬µÄÈýÏî³ÉµÈ²îÊýÁУ¿Èô´æÔÚ£¬Ð´³öÁ½×éÕâÈýÏÈô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©ÈôqΪ´óÓÚ1µÄÕýÕûÊý£®ÊÔÎÊ{an}ÖÐÊÇ·ñ´æÔÚÒ»Ïîak£¬Ê¹µÃakÇ¡ºÃ¿ÉÒÔ±íʾΪ¸ÃÊýÁÐÖÐÁ¬ÐøÁ½ÏîµÄºÍ£¿Çë˵Ã÷ÀíÓÉ£®
¡¾´ð°¸¡¿
·ÖÎö£º£¨1£©¸ù¾ÝS
4£¬S
12£¬S
8³ÉµÈ²îÊýÁУ¬q¡Ù1£¬¿ÉµÃS
12=S
4+S
8£¬»¯¼ò¿ÉµÃ2q
8=1+q
4£¬½ø¶ø¿ÉÒÔÖ¤Ã÷a
10£¬a
18£¬a
14³ÉµÈ²îÊýÁУ»
£¨2£©¸ù¾ÝS
m£¬S
k£¬S
t£¨m£¬k£¬tΪ»¥²»ÏàµÈµÄÕýÕûÊý£©³ÉµÈ²îÊýÁУ¬¿ÉµÃ2S
k=S
m+S
t£¬»¯¼ò¿ÉµÃ
£¬´Ó¶ø¿ÉµÃa
m+1£¬a
k+1£¬a
t+1³ÉµÈ²îÊýÁУ¬¼´¿ÉµÃ³ö½áÂÛ£»
£¨3£©¼ÙÉè´æÔÚÒ»Ïîa
k£¬Ê¹µÃa
kÇ¡ºÃ¿ÉÒÔ±íʾΪ¸ÃÊýÁÐÖÐÁ¬ÐøÁ½ÏîµÄºÍ£¬Éèa
k=a
n+a
n+1£¬¿ÉµÃk£¾n£¬q
k-n=1+q
£¬´Ó¶ø¿ÉµÃ½áÂÛ£®
½â´ð£º½â£º£¨1£©ÈôS
4£¬S
12£¬S
8³ÉµÈ²îÊýÁУ¬q¡Ù1£¬ÔòS
12=S
4+S
8£¬
¡à
=
+
¡à2q
8=1+q
4¡àa
10+a
14=
=
=
=2a
18£¬
¡àa
10£¬a
18£¬a
14³ÉµÈ²îÊýÁУ»
£¨2£©ÈôS
m£¬S
k£¬S
t£¨m£¬k£¬tΪ»¥²»ÏàµÈµÄÕýÕûÊý£©³ÉµÈ²îÊýÁУ¬Ôò2S
k=S
m+S
t£¬
¡à
=
+
¡à2q
k=q
m+q
t¡à
¡àa
m+1£¬a
k+1£¬a
t+1³ÉµÈ²îÊýÁУ¬
¡àa
m+2£¬a
k+2£¬a
t+2³ÉµÈ²îÊýÁУ»
£¨3£©¼ÙÉè´æÔÚÒ»Ïîa
k£¬Ê¹µÃa
kÇ¡ºÃ¿ÉÒÔ±íʾΪ¸ÃÊýÁÐÖÐÁ¬ÐøÁ½ÏîµÄºÍ£¬Éèa
k=a
n+a
n+1£¬
Ôò
¡ßa
1¡Ù0£¬q£¾1
¡àq
k-1=q
n-1+q
n¡àq
k=q
n+q
n+1¡ßq
n+1£¾1
¡àq
k£¾q
n¡àk£¾n£¬q
k-n=1+q
µ±qΪżÊýʱ£¬q
k-nΪżÊý£¬¶ø1+qΪÆæÊý£¬¼ÙÉè²»³ÉÁ¢£»
µ±qΪÆæÊýʱ£¬q
k-nΪÆæÊý£¬¶ø1+qΪżÊý£¬¼ÙÉèÒ²²»³ÉÁ¢£¬
×ÛÉÏ£¬{a
n}Öв»´æÔÚa
k£¬Ê¹µÃa
kÇ¡ºÃ¿ÉÒÔ±íʾΪ¸ÃÊýÁÐÖÐÁ¬ÐøÁ½ÏîµÄºÍ£®
µãÆÀ£º±¾Ì⿼²éµÈ²îÊýÁÐÓëµÈ±ÈÊýÁеÄ×ۺϣ¬¿¼²éµÈ²îÊýÁеÄÖ¤Ã÷£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮