£¨2013•³¯ÑôÇøһģ£©Èçͼ£¬ÔÚËÄÀâ׶P-ABCDÖУ¬Æ½ÃæPAC¡ÍƽÃæABCD£¬ÇÒPA¡ÍAC£¬PA=AD=2£®ËıßÐÎABCDÂú×ãBC¡ÎAD£¬AB¡ÍAD£¬AB=BC=1£®µãE£¬F·Ö±ðΪ²àÀâPB£¬PCÉϵĵ㣬ÇÒ
PE
PB
=
PF
PC
=¦Ë
£®
£¨¢ñ£©ÇóÖ¤£ºEF¡ÎƽÃæPAD£»
£¨¢ò£©µ±¦Ë=
1
2
ʱ£¬ÇóÒìÃæÖ±ÏßBFÓëCDËù³É½ÇµÄÓàÏÒÖµ£»
£¨¢ó£©ÊÇ·ñ´æÔÚʵÊý¦Ë£¬Ê¹µÃƽÃæAFD¡ÍƽÃæPCD£¿Èô´æÔÚ£¬ÊÔÇó³ö¦ËµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨¢ñ£©ÓÉ
PE
PB
=
PF
PC
=¦Ë¿ÉÖª£¬EF¡ÎBC£¬ÒÀÌâÒ⣬¿ÉÇóµÃEF¡ÎAD£¬ÔÙÀûÓÃÏßÃæƽÐеÄÅж϶¨Àí¼´¿ÉÖ¤µÃ½áÂÛ£»
£¨¢ò£©¿ÉÖ¤µÃPA£¬AB£¬ADÁ½Á½´¹Ö±£¬ÒÔ֮ΪÖὨÁ¢¿Õ¼äÖ±½Ç×ø±êϵ£¬¿ÉÇóµÃ
BF
Óë
CD
µÄ×ø±ê£¬ÀûÓÃÏòÁ¿µÄÊýÁ¿»ý¼´¿ÉÇóµÃÒìÃæÖ±ÏßBFÓëCDËù³É½ÇµÄÓàÏÒÖµ£»
£¨¢ó£©ÉèF£¨x0£¬y0£¬z0£©£¬Ôò
PF
=£¨x0£¬y0£¬z0-2£©£¬
PC
=£¨1£¬1£¬-2£©£¬ÓÉ
PF
=¦Ë
PC
£¬¿ÉÇóµÃF£¨¦Ë£¬¦Ë£¬2-2¦Ë£©£¬ÔÙÉè³öƽÃæAFDµÄÒ»¸ö·¨ÏòÁ¿Îªn1=£¨x1£¬y1£¬z1£©£¬Æ½ÃæPCDµÄÒ»¸ö·¨ÏòÁ¿Îªn2=£¨x2£¬y2£¬z2£©£¬¿ÉÇóµÃÕâÁ½¸ö·¨ÏòÁ¿µÄ×ø±ê£¬ÀûÓÃn1•n2=0£¬¼´¿ÉÇóµÃ¦ËµÄÖµ£®
½â´ð£ºÖ¤Ã÷£º£¨¢ñ£©ÓÉÒÑÖª£¬
PE
PB
=
PF
PC
=¦Ë£¬
ËùÒÔEF¡ÎBC£®
ÒòΪBC¡ÎAD£¬ËùÒÔEF¡ÎAD£®
¶øEF?ƽÃæPAD£¬AD?ƽÃæPAD£¬
ËùÒÔEF¡ÎƽÃæPAD£®          ¡­£¨4·Ö£©
£¨¢ò£©ÒòΪƽÃæABCD¡ÍƽÃæPAC£¬
ƽÃæABCD¡ÉƽÃæPAC=AC£¬ÇÒPA¡ÍAC£¬
ËùÒÔPA¡ÍƽÃæABCD£®
ËùÒÔPA¡ÍAB£¬PA¡ÍAD£®
ÓÖÒòΪAB¡ÍAD£¬
ËùÒÔPA£¬AB£¬ADÁ½Á½´¹Ö±£®      ¡­£¨5·Ö£©
ÈçͼËùʾ£¬½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵ£¬
ÒòΪAB=BC=1£¬PA=AD=2£¬
ËùÒÔA£¨0£¬0£¬0£©£¬B£¨1£¬0£¬0£©£¬C£¨1£¬1£¬0£©£¬D£¨0£¬2£¬0£©£¬P£¨0£¬0£¬2£©£®
µ±¦Ë=
1
2
ʱ£¬FΪPCÖе㣬
ËùÒÔF£¨
1
2
£¬
1
2
£¬1£©£¬
ËùÒÔ
BF
=£¨-
1
2
£¬
1
2
£¬1£©£¬
CD
=£¨-1£¬1£¬0£©£®
ÉèÒìÃæÖ±ÏßBFÓëCDËù³ÉµÄ½ÇΪ¦È£¬
ËùÒÔcos¦È=|cos£¼
BF
£¬
CD
£¾|=
|(-
1
2
£¬
1
2
£¬1)•(-1£¬1£¬0)|
1
4
+
1
4
+1
¡Á
2
=
3
3
£¬
ËùÒÔÒìÃæÖ±ÏßBFÓëCDËù³É½ÇµÄÓàÏÒֵΪ
3
3
£®¡­£¨9·Ö£©
£¨¢ó£©ÉèF£¨x0£¬y0£¬z0£©£¬Ôò
PF
=£¨x0£¬y0£¬z0-2£©£¬
PC
=£¨1£¬1£¬-2£©£®
ÓÉÒÑÖª
PF
=¦Ë
PC
£¬ËùÒÔ£¨x0£¬y0£¬z0-2£©=¦Ë£¨1£¬1£¬-2£©£¬
ËùÒÔ
x0=¦Ë
y0=¦Ë
z0=2-2¦Ë
£¬
¡à
AF
=£¨¦Ë£¬¦Ë£¬2-2¦Ë£©£®
ÉèƽÃæAFDµÄÒ»¸ö·¨ÏòÁ¿Îªn1=£¨x1£¬y1£¬z1£©£¬ÒòΪ
AD
=£¨0£¬2£¬0£©£¬
ËùÒÔ
n1
AF
=0
n1
AD
=0
¼´
¦Ëx1+¦Ëy1+(2-2¦Ë)z1=0
2y1=0
£¬
Áîz1=¦Ë£¬µÃn1=£¨2¦Ë-2£¬0£¬¦Ë£©£®
ÉèƽÃæPCDµÄÒ»¸ö·¨ÏòÁ¿Îªn2=£¨x2£¬y2£¬z2£©£¬
ÒòΪ
PD
=£¨0£¬2£¬-2£©£¬
CD
=£¨-1£¬1£¬0£©£¬
ËùÒÔ
n2
PD
=0
n2
CD
=0
¼´
2y2-2z2=0
-x2+y2=0

Áîx2=1£¬Ôòn2=£¨1£¬1£¬1£©£®
ÈôƽÃæAFD¡ÍƽÃæPCD£¬Ôòn1•n2=0£¬ËùÒÔ£¨2¦Ë-2£©+¦Ë=0£¬½âµÃ¦Ë=
2
3
£®
ËùÒÔµ±¦Ë=
2
3
ʱ£¬Æ½ÃæAFD¡ÍƽÃæPCD£®¡­£¨14·Ö£©
µãÆÀ£º±¾Ì⿼²éÖ±ÏßÓëƽÃæµÄƽÐУ¬¿¼²éÒìÃæÖ±ÏßËù³ÉµÄ½Ç£¬¿¼²éÃæÃæ´¹Ö±£¬Í»³ö¿¼²é¿Õ¼äÖ±½Ç×ø±êϵÔÚÖ¤Ã÷Óë¼ÆËãÖеÄÓ¦Óã®ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•³¯ÑôÇøһģ£©ÒÑÖªº¯Êýf(x)=
3
2
sin¦Øx-sin2
¦Øx
2
+
1
2
£¨¦Ø£¾0£©µÄ×îСÕýÖÜÆÚΪ¦Ð£®
£¨¢ñ£©Çó¦ØµÄÖµ¼°º¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£»
£¨¢ò£©µ±x¡Ê[0£¬
¦Ð
2
]
ʱ£¬Çóº¯Êýf£¨x£©µÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•³¯ÑôÇøһģ£©ÈôÖ±Ïßy=x+mÓëÔ²x2+y2+4x+2=0ÓÐÁ½¸ö²»Í¬µÄ¹«¹²µã£¬ÔòʵÊýmµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•³¯ÑôÇøһģ£©ºÐ×ÓÖÐ×°ÓÐËÄÕÅ´óСÐÎ×´¾ùÏàͬµÄ¿¨Æ¬£¬¿¨Æ¬ÉÏ·Ö±ð±êÓÐÊý×Ö-1£¬0£¬1£¬2£®³Æ¡°´ÓºÐÖÐËæ»ú³éÈ¡Ò»ÕÅ£¬¼ÇÏ¿¨Æ¬ÉϵÄÊý×ֺ󲢷Żء±ÎªÒ»´ÎÊÔÑ飨Éèÿ´ÎÊÔÑéµÄ½á¹û»¥²»Ó°Ï죩£®
£¨¢ñ£©ÔÚÒ»´ÎÊÔÑéÖУ¬Çó¿¨Æ¬ÉϵÄÊý×ÖΪÕýÊýµÄ¸ÅÂÊ£»
£¨¢ò£©ÔÚËÄ´ÎÊÔÑéÖУ¬ÇóÖÁÉÙÓÐÁ½´Î¿¨Æ¬ÉϵÄÊý×Ö¶¼ÎªÕýÊýµÄ¸ÅÂÊ£»
£¨¢ó£©ÔÚÁ½´ÎÊÔÑéÖУ¬¼Ç¿¨Æ¬ÉϵÄÊý×Ö·Ö±ðΪ¦Î£¬¦Ç£¬ÊÔÇóËæ»ú±äÁ¿X=¦Î•¦ÇµÄ·Ö²¼ÁÐÓëÊýѧÆÚÍûEX£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•³¯ÑôÇøһģ£©ÒÑÖªº¯Êýf£¨x£©=x2-£¨a+2£©x+alnx+2a+2£¬ÆäÖÐa¡Ü2£®
£¨¢ñ£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨¢ò£©Èôº¯Êýf£¨x£©ÔÚ£¨0£¬2]ÉÏÓÐÇÒÖ»ÓÐÒ»¸öÁãµã£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•³¯ÑôÇøһģ£©Éè¦Ó=£¨x1£¬x2£¬¡­£¬x10£©ÊÇÊý1£¬2£¬3£¬4£¬5£¬6£¬7£¬8£¬9£¬10µÄÈÎÒâÒ»¸öÈ«ÅÅÁУ¬¶¨ÒåS(¦Ó)=
10k=1
|2xk-3xk+1|
£¬ÆäÖÐx11=x1£®
£¨¢ñ£©Èô¦Ó=£¨10£¬9£¬8£¬7£¬6£¬5£¬4£¬3£¬2£¬1£©£¬ÇóS£¨¦Ó£©µÄÖµ£»
£¨¢ò£©ÇóS£¨¦Ó£©µÄ×î´óÖµ£»
£¨¢ó£©ÇóʹS£¨¦Ó£©´ïµ½×î´óÖµµÄËùÓÐÅÅÁЦӵĸöÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸