精英家教网 > 高中数学 > 题目详情
5.已知$0<x<\frac{π}{2},f(x)=\frac{1}{sinx}+\frac{2015}{1-sinx}$的最小值为2016+2$\sqrt{2015}$.

分析 化简f(x)=1+$\frac{1-sinx}{sinx}$+2015+$\frac{2015sinx}{1-sinx}$,从而利用基本不等式求解.

解答 解:f(x)=$\frac{(1-sinx)+sinx}{sinx}$+$\frac{2015[sinx+(1-sinx)]}{1-sinx}$
=1+$\frac{1-sinx}{sinx}$+2015+$\frac{2015sinx}{1-sinx}$
=2016+$\frac{1-sinx}{sinx}$+$\frac{2015sinx}{1-sinx}$
≥2016+2$\sqrt{2015}$,
(当且仅当$\frac{1-sinx}{sinx}$=$\frac{2015sinx}{1-sinx}$时,等号成立);
故答案为:2016+2$\sqrt{2015}$.

点评 本题考查了函数的化简与应用及基本不等式的解法应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设集合A={x|a-2<x<a+2},B={x|$\frac{2x-1}{x+2}$<1},若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况:
①7,34,61,88,115,142,169,196,223,250;
②5,9,100,107,111,121,180,195,200,265;
③11,38,65,92,119,146,173,200,227,254;
④30,57,84,111,138,165,192,219,246,270.
关于上述样本的下列结论中,不正确的是(  )
A.①可能是分层抽样,也可能是系统抽样
B.②可能是分层抽样,不可能是系统抽样
C.③可能是分层抽样,也可能是系统抽样
D.④可能是分层抽样,也可能是系统抽样

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.变量x,y满足条件$\left\{\begin{array}{l}{x-y+1≤0}\\{y≤1}\\{x≥-1}\end{array}\right.$,则(x-1)2+y2的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知tan2x-tanx-6=0,且x为第四象限角,试求:
(1)sinxcos(π-x)的值; 
(2)2cosx-sinx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)是定义在R上的奇函数,当x>0时,f(x)=log3x,则f(-9)的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(Ⅰ)若x>0,求f(x)=$\frac{12}{x}+3x$的最小值.
(Ⅱ)已知0<x<$\frac{1}{3}$,求f(x)=x(1-3x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.计算下列各题:
(1)0.001${\;}^{-\frac{1}{3}}$-($\frac{7}{8}$)0+16${\;}^{\frac{3}{4}}$+($\sqrt{2}$•$\root{3}{3}$)6
(2)log3$\sqrt{27}$+lg25+lg4+7log72+(-9.8)0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=loga(x-a)+1(a>0,且a≠1)过点(6,3).
(1)求实数a的值.
(2)设函数h(x)=ax+1,函数F(x)=[h(x)+2]2的图象恒在函数G(x)=h(2+x)+m+2的图象上方,求实数m的取值范围.

查看答案和解析>>

同步练习册答案