【题目】设全集为R,集合A={x| ≥0},B={x|﹣2≤x<0},则(RA)∩B=( )
A.(﹣1,0)
B.[﹣1,0)
C.[﹣2,﹣1]
D.[﹣2,﹣1)
科目:高中数学 来源: 题型:
【题目】甲乙两人同时生产内径为的一种零件,为了对两人的生产质量进行评比,从他们生产的零件中各抽出 5 件(单位: ) ,
甲:25.44,25.43, 25.41,25.39,25.38
乙:25.41,25.42, 25.41,25.39,25.42.
从生产的零件内径的尺寸看、谁生产的零件质量较高.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面为矩形,平面平面, , , , 为中点.
(Ⅰ)求证: 平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在点,使得?若存在,求的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知一动点, 到点的距离减去它到轴距离的差都是.
()求动点的轨迹方程.
()设动点的轨迹为,已知定点、,直线、与轨迹的另一个交点分别为、.
(i)点能否为线段的中点,若能,求出直线的方程,若不能,说明理由.
(ii)求证:直线过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆的左、右焦点为,右顶点为,上顶点为,若, 与轴垂直,且.
(1)求椭圆方程;
(2)过点且不垂直于坐标轴的直线与椭圆交于两点,已知点,当时,求满足的直线的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆的离心率是,过点的动直线与椭圆相交于两点,当直线与轴平行时,直线被椭圆截得的线段长为.
(Ⅰ)求椭圆的方程;
(Ⅱ)在轴上是否存在异于点的定点,使得直线变化时,总有?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】统计表明,家庭的月理财投入(单位:千元)与月收入(单位:千元)之间具有线性相关关系.某银行随机抽取5个家庭,获得第()个家庭的月理财投入与月收入的数据资料,经计算得.
(1)求关于的回归方程;
(2)判断与之间是正相关还是负相关;
(3)若某家庭月理财投入为5千元,预测该家庭的月收入.
附:回归方程的斜率与截距的最小二乘估计公式分别为:
,其中为样本平均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F1 , F2分别为椭圆C: + =1(a>b>0)的左、右两个焦点,椭圆上点M( , )到F1、F2两点的距离之和等于4.
(1)求椭圆C的方程;
(2)已知过右焦点且垂直于x轴的直线与椭圆交于点N(点N在第一象限),E,F是椭圆C上的两个动点,如果kEN+KFN=0,证明直线EF的斜率为定值,并求出这个定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com