精英家教网 > 高中数学 > 题目详情

已知a<b<0,奇函数f(x)的定义域为[a,-a],在区间[-b,-a]上单调递减且f(x)>0,则在区间[a,b]上


  1. A.
    f(x)>0且|f(x)|单调递减
  2. B.
    f(x)>0且|f(x)|单调递增
  3. C.
    f(x)<0且|f(x)|单调递减
  4. D.
    f(x)<0且|f(x)|单调递增
D
分析:先根据函数区间[-b,-a]上单调递减且f(x)>0,判断f(-a)和f(-b)的大小,又根据其奇偶性判断f(a)和f(b)的大小及f(x)与0的关系.进而判断|f(a)|和|f(b)|的大小,最后判断|f(x)|的单调性.
解答:∵f(x)为奇函数
∴f(-a)=-f(a),f(-b)=-f(b)
∵f(x)区间[-b,-a]上单调递减且f(x)>0,a<b<0,
∴-a>-b>0,
∴f(-a)<f(-b)<0,f(x)<0
∴f(a)>f(b)>0
∴|f(a)|>|f(b)|>0
∵a<b
|f(x)|在区间[a,b]上单调减.
故答案选D
点评:本题主要考查函数奇偶性和单调性的应用.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=loga
2m-1-mxx+1
(a>0,a≠1)
是奇函数,定义域为区间D(使表达式有意义的实数x 的集合).
(1)求实数m的值,并写出区间D;
(2)若底数a>1,试判断函数y=f(x)在定义域D内的单调性,并说明理由;
(3)当x∈A=[a,b)(A⊆D,a是底数)时,函数值组成的集合为[1,+∞),求实数a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga
2m-1-mxx+1
(a>0,a≠1)
是奇函数,定义域为区间D(使表达式有意义的实数x 的集合).
(1)求实数m的值,并写出区间D;
(2)若底数a满足0<a<1,试判断函数y=f(x)在定义域D内的单调性,并说明理由;
(3)当x∈A=[a,b)(A⊆D,a是底数)时,函数值组成的集合为[1,+∞),求实数a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在[-1,1]上的奇函数. 当a,b∈[-1,1],且a+b≠0时,有
f(a)+f(b)a+b
>0
成立.
(Ⅰ)判断函f(x)的单调性,并证明;
(Ⅱ)若f(1)=1,且f(x)≤m2-2bm+1对所有x∈[-1,1],b∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)(x∈R)的一段图象如图所示,f′(x)是函f(x)(数的导函数,且y=f(x+1)是奇函数,给出以下结论:
①f(1-x)+f(1+x)=0;
②f′(x)(x-1)≥0;
③f(x)(x-1)≥0;
④f(x)+f(-x)=0
其中一定正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x).当x<0时,f(x)=x2+2x.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)问:是否存在实数a,b(a≠b),使f(x)在x∈[a,b]时,函数值的集合为[
1
b
1
a
]
?若存在,求出a,b;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案