Èô¶¨ÒåÔÚDÉϵĺ¯Êýy=f£¨x£©Âú×ãÌõ¼þ£º´æÔÚʵÊýa£¬b£¨a£¼b£©ÇÒ[a£¬b]?D£¬Ê¹µÃ£º
¢ÙÈÎÈ¡x0¡Ê[a£¬b]£¬ÓÐf£¨x0£©=C£¨CÊdz£Êý£©£»
¢Ú¶ÔÓÚDÄÚÈÎÒây0£¬µ±y0∉[a£¬b]£¬×ÜÓÐf£¨y0£©£¼C£®
ÎÒÃǽ«Âú×ãÉÏÊöÁ½Ìõ¼þµÄº¯Êýf£¨x£©³ÆΪ¡°Æ½¶¥ÐÍ¡±º¯Êý£¬³ÆCΪ¡°Æ½¶¥¸ß¶È¡±£¬³Æb-aΪ¡°Æ½¶¥¿í¶È¡±£®¸ù¾ÝÉÏÊö¶¨Ò壬½â¾öÏÂÁÐÎÊÌ⣺
£¨1£©º¯Êýf£¨x£©=-|x+2|-|x-3|ÊÇ·ñΪ¡°Æ½¶¥ÐÍ¡±º¯Êý£¿ÈôÊÇ£¬Çó³ö¡°Æ½¶¥¸ß¶È¡±ºÍ¡°Æ½¶¥¿í¶È¡±£»Èô²»ÊÇ£¬¼òҪ˵Ã÷ÀíÓÉ£®
£¨2£©ÒÑÖªf(x)=mx-
x2+2x+n
£¬x¡Ê[-2£¬+¡Þ)
ÊÇ¡°Æ½¶¥ÐÍ¡±º¯Êý£¬Çó³öm£¬nµÄÖµ£®
£¨3£©¶ÔÓÚ£¨2£©Öеĺ¯Êýf£¨x£©£¬Èôf£¨x£©=kxÔÚx¡Ê[-2£¬+¡Þ£©ÉÏÓÐÁ½¸ö²»ÏàµÈµÄ¸ù£¬ÇóʵÊýkµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨1£©ÌÖÂÛxµÄ·¶Î§È¥µô¾ø¶ÔÖµ£¬È»ºó¸ù¾Ý¡°Æ½¶¥ÐÍ¡±º¯Êý¶¨Òå½øÐÐÅж¨¼´¿É£¬ÔÙÇó³ö¡°Æ½¶¥¸ß¶È¡±ºÍ¡°Æ½¶¥¿í¶È¡±£»
£¨2£©´æÔÚÇø¼ä[a£¬b]?[-2£¬+¡Þ£©£¬Ê¹µÃmx-
x2+2x+n
=c
ºã³ÉÁ¢£¬Ôòx2+2x+n=£¨mx+c£©2ºã³ÉÁ¢£¬´Ó¶øÇó³öm£¬nµÄÖµ£®
£¨3£©ÌÖÂÛx£¬ÓÃk±íʾ³öx£¬´Ó¶ø¿ÉÇó³ökµÄÈ¡Öµ·¶Î§£®
½â´ð£º½â£º£¨1£©f(x)=
2x-1£¬x£¼-2
-5£¬-2¡Üx¡Ü3
1-2x£¬x£¾3
£¬------2¡ä
Ôò´æÔÚÇø¼ä[-2£¬3]ʹx¡Ê[-2£¬3]ʱf£¨x£©=-5
ÇÒµ±x£¼-2ºÍx£¾3ʱ£¬f£¨x£©£¼-5ºã³ÉÁ¢£®                   2¡ä
ËùÒÔº¯Êýf£¨x£©ÊÇ¡°Æ½¶¥ÐÍ¡±º¯Êý£¬Æ½¶¥¸ß¶ÈΪ-5£¬Æ½¶¥¿í¶ÈΪ5£®---2¡ä
£¨2£©´æÔÚÇø¼ä[a£¬b]?[-2£¬+¡Þ£©£¬Ê¹µÃmx-
x2+2x+n
=c
ºã³ÉÁ¢----1¡ä
Ôòx2+2x+n=£¨mx-c£©2ºã³ÉÁ¢£¬Ôò
m2=1
2mc=2
c2=n
m=1
n=1
»ò
m=-1
n=1
----3¡ä
µ±m=n=1ʱ£¬f(x)=
2x+1£¬-2¡Üx£¼-1
-1£¬x¡Ý-1
²»ÊÇ¡°Æ½¶¥ÐÍ¡±º¯Êý£®
µ±m=-1£¬n=1ʱ£¬f(x)=
1£¬-2¡Üx£¼-1
-2x-1£¬x¡Ý-1
ÊÇ¡°Æ½¶¥ÐÍ¡±º¯Êý¡àm=-1£¬n=1
£¨3£©x¡Ý-1ʱ£¬-2x-1=kx£¬Ôò
-1
k+2
¡Ý-1
£¬µÃk£¼-2»òk¡Ý-1------2¡ä
-2¡Üx£¼-1ʱ£¬1=kx£¬Ôò-2¡Ü
1
k
£¼-1
£¬µÃ-1£¼k¡Ü-
1
2
--2¡äËùÒÔ-1£¼k¡Ü-
1
2
£®1¡ä
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËж¨ÒåµÄº¯Êý£¬ÒÔ¼°ºã³ÉÁ¢ÎÊÌ⣬ͬʱ¿¼²éÁË·ÖÀàÌÖÂÛµÄÊýѧ˼ÏëºÍ¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ºÉϺ£ÊÐËɽ­¶þÖÐ2012½ì¸ßÈýÉÏѧÆÚÆÚÖп¼ÊÔÊýѧÀí¿ÆÊÔÌâ ÌâÐÍ£º044

Èô¶¨ÒåÔÚDÉϵĺ¯Êýy£½f(x)Âú×ãÌõ¼þ£º´æÔÚʵÊýa£¬b(a£¼b)ÇÒ£¬Ê¹µÃ£º(1)ÈÎÈ¡x0¡Ê[a£¬b]£¬ÓÐf(x0)£½C(CÊdz£Êý)£»(2)¶ÔÓÚDÄÚÈÎÒây0£¬µ±y0[a£¬b]£¬×ÜÓÐf(y0)£¼C£®ÎÒÃǽ«Âú×ãÉÏÊöÁ½Ìõ¼þµÄº¯Êýf(x)³ÆΪ¡°Æ½¶¥ÐÍ¡±º¯Êý£¬³ÆCΪ¡°Æ½¶¥¸ß¶È¡±£¬³Æb£­aΪ¡°Æ½¶¥¿í¶È¡±£®¸ù¾ÝÉÏÊö¶¨Ò壬½â¾öÏÂÁÐÎÊÌ⣺

(1)º¯Êýf(x)£½£­|x£«2|£­|x£­3|ÊÇ·ñΪ¡°Æ½¶¥ÐÍ¡±º¯Êý£¿ÈôÊÇ£¬Çó³ö¡°Æ½¶¥¸ß¶È¡±ºÍ¡°Æ½¶¥¿í¶È¡±£»Èô²»ÊÇ£¬¼òҪ˵Ã÷ÀíÓÉ£®

(2)ÒÑÖªÊÇ¡°Æ½¶¥ÐÍ¡±º¯Êý£¬Çó³öm£¬nµÄÖµ£®

(3)¶ÔÓÚ(2)Öеĺ¯Êýf(x)£¬Èôf(x)£½kxÔÚx¡Ê[£­2£¬£«¡Þ)ÉÏÓÐÁ½¸ö²»ÏàµÈµÄ¸ù£¬ÇóʵÊýkµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ºÉϺ£ÊÐËɽ­¶þÖÐ2012½ì¸ßÈýÉÏѧÆÚÆÚÖп¼ÊÔÊýѧÎÄ¿ÆÊÔÌâ ÌâÐÍ£º044

Èô¶¨ÒåÔÚDÉϵĺ¯Êýy£½f(x)Âú×ãÌõ¼þ£º´æÔÚʵÊýa£¬b(a£¼b)ÇÒ[a£¬b]D£¬Ê¹µÃ£º(1)ÈÎÈ¡x0¡Ê[a£¬b]£¬ÓÐf(x0)£½C(CÊdz£Êý)£»

(2)¶ÔÓÚDÄÚÈÎÒây0£¬µ±y0[a£¬b]£¬×ÜÓÐf(y0)£¼C£®

ÎÒÃǽ«Âú×ãÉÏÊöÁ½Ìõ¼þµÄº¯Êýf(x)³ÆΪ¡°Æ½¶¥ÐÍ¡±º¯Êý£¬³ÆCΪ¡°Æ½¶¥¸ß¶È¡±£¬³Æb£­aΪ¡°Æ½¶¥¿í¶È¡±£®¸ù¾ÝÉÏÊö¶¨Ò壬½â¾öÏÂÁÐÎÊÌ⣺

(1)º¯Êýf(x)£½£­|x£«2|£­|x£­3|ÊÇ·ñΪ¡°Æ½¶¥ÐÍ¡±º¯Êý£¿ÈôÊÇ£¬Çó³ö¡°Æ½¶¥¸ß¶È¡±ºÍ¡°Æ½¶¥¿í¶È¡±£»Èô²»ÊÇ£¬¼òҪ˵Ã÷ÀíÓÉ£®

(2)ÇóʵÊýnµÄÖµ£¬Ê¹º¯ÊýÊÇ¡°Æ½¶¥ÐÍ¡±º¯Êý£®

(3)¶ÔÓÚ(2)Öеĺ¯Êýf(x)£¬Èôf(x)£½kxÔÚx¡Ê[£­2£¬£«¡Þ)ÉÏÓÐÁ½¸ö²»ÏàµÈµÄ¸ù£¬ÇóʵÊýkµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

Èô¶¨ÒåÔÚDÉϵĺ¯Êýy=f£¨x£©Âú×ãÌõ¼þ£º´æÔÚʵÊýa£¬b£¨a£¼b£©ÇÒ[a£¬b]?D£¬Ê¹µÃ£º
¢ÙÈÎÈ¡x0¡Ê[a£¬b]£¬ÓÐf£¨x0£©=C£¨CÊdz£Êý£©£»
¢Ú¶ÔÓÚDÄÚÈÎÒây0£¬µ±y0∉[a£¬b]£¬×ÜÓÐf£¨y0£©£¼C£®
ÎÒÃǽ«Âú×ãÉÏÊöÁ½Ìõ¼þµÄº¯Êýf£¨x£©³ÆΪ¡°Æ½¶¥ÐÍ¡±º¯Êý£¬³ÆCΪ¡°Æ½¶¥¸ß¶È¡±£¬³Æb-aΪ¡°Æ½¶¥¿í¶È¡±£®¸ù¾ÝÉÏÊö¶¨Ò壬½â¾öÏÂÁÐÎÊÌ⣺
£¨1£©º¯Êýf£¨x£©=-|x+2|-|x-3|ÊÇ·ñΪ¡°Æ½¶¥ÐÍ¡±º¯Êý£¿ÈôÊÇ£¬Çó³ö¡°Æ½¶¥¸ß¶È¡±ºÍ¡°Æ½¶¥¿í¶È¡±£»Èô²»ÊÇ£¬¼òҪ˵Ã÷ÀíÓÉ£®
£¨2£©ÒÑÖªÊýѧ¹«Ê½ÊÇ¡°Æ½¶¥ÐÍ¡±º¯Êý£¬Çó³öm£¬nµÄÖµ£®
£¨3£©¶ÔÓÚ£¨2£©Öеĺ¯Êýf£¨x£©£¬Èôf£¨x£©=kxÔÚx¡Ê[-2£¬+¡Þ£©ÉÏÓÐÁ½¸ö²»ÏàµÈµÄ¸ù£¬ÇóʵÊýkµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

Èô¶¨ÒåÔÚDÉϵĺ¯Êýy=f£¨x£©Âú×ãÌõ¼þ£º´æÔÚʵÊýa£¬b£¨a£¼b£©ÇÒ[a£¬b]?D£¬Ê¹µÃ£º
¢ÙÈÎÈ¡x0¡Ê[a£¬b]£¬ÓÐf£¨x0£©=C£¨CÊdz£Êý£©£»
¢Ú¶ÔÓÚDÄÚÈÎÒây0£¬µ±y0∉[a£¬b]£¬×ÜÓÐf£¨y0£©£¼C£®
ÎÒÃǽ«Âú×ãÉÏÊöÁ½Ìõ¼þµÄº¯Êýf£¨x£©³ÆΪ¡°Æ½¶¥ÐÍ¡±º¯Êý£¬³ÆCΪ¡°Æ½¶¥¸ß¶È¡±£¬³Æb-aΪ¡°Æ½¶¥¿í¶È¡±£®¸ù¾ÝÉÏÊö¶¨Ò壬½â¾öÏÂÁÐÎÊÌ⣺
£¨1£©º¯Êýf£¨x£©=-|x+2|-|x-3|ÊÇ·ñΪ¡°Æ½¶¥ÐÍ¡±º¯Êý£¿ÈôÊÇ£¬Çó³ö¡°Æ½¶¥¸ß¶È¡±ºÍ¡°Æ½¶¥¿í¶È¡±£»Èô²»ÊÇ£¬¼òҪ˵Ã÷ÀíÓÉ£®
£¨2£©ÒÑÖªf(x)=mx-
x2+2x+n
£¬x¡Ê[-2£¬+¡Þ)
ÊÇ¡°Æ½¶¥ÐÍ¡±º¯Êý£¬Çó³öm£¬nµÄÖµ£®
£¨3£©¶ÔÓÚ£¨2£©Öеĺ¯Êýf£¨x£©£¬Èôf£¨x£©=kxÔÚx¡Ê[-2£¬+¡Þ£©ÉÏÓÐÁ½¸ö²»ÏàµÈµÄ¸ù£¬ÇóʵÊýkµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸