【题目】已知函数.
(1)若,求曲线在点处的切线方程;
(2)若在处取得极小值,求实数的取值范围.
【答案】(1);(2).
【解析】试题分析:(1)当时, ,利用导数几何意义,求出函数在处的切线斜率,再求出切线方程;(2)对函数求导,令,讨论的单调性,对 分情况讨论,得出实数的取值范围.
试题解析:(1)当时, , , ,所以曲线在点处的切线方程为.
(2)由已知得,则,
记,则,
①当, 时, ,函数单调递增,
所以当时, ,当时, ,
所以在处取得极小值,满足题意.
②当时, 时, ,函数单调递增,
可得当时, , 时, 当,
所以在处取得极小值,满足题意.
③当时,当时, ,函数单调递增,
时, , 在内单调递减,
所以当时, , 单调递减,不合题意.
④当时,即,当时, , 单调递减,
,当时, , 单调递减, ,
所以在处取得极大值,不合题意.
综上可知,实数的取值范围为.
科目:高中数学 来源: 题型:
【题目】已知定义在(0, )上的函数f(x)的导函数为f′(x),且对于任意的x∈(0, ),都有f′(x)sinx<f(x)cosx,则( )
A. f( )> f( )
B.f( )>f(1)
C. f( )<f( )
D. f( )<f( )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l:(2 +1)x+( +2)y+2 +2=0( ∈R),有下列四个结论:
直线l经过定点(0,-2);
②若直线l在x轴和y轴上的截距相等,则 =1;
当 ∈[1, 4+3 ]时,直线l的倾斜角q∈[120°,135°];
④当 ∈(0,+∞)时,直线l与两坐标轴围成的三角形面积的最小值为 .
其中正确结论的是(填上你认为正确的所有序号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l1经过两点(-1,-2)、(-1,4),直线l2经过两点(2,1)、(x,6),且l1||l2 , 则x=( ).
A.2
B.-2
C.4
D.1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的两个焦点,动点在椭圆上,且使得的点恰有两个,动点到焦点的距离的最大值为.
(1)求椭圆的方程;
(2)如图,以椭圆的长轴为直径作圆,过直线上的动点作圆的两条切线,设切点分别为,若直线与椭圆交于不同的两点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥,侧面是边长为2的正三角形,且与底面垂直,底面是的菱形, 为棱上的动点,且.
(1)求证: ;
(2)试确定的值,使得二面角的平面角余弦值为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:空间两向量 =(1,﹣1,m)与 =(1,2,m)的夹角不大于 ;命题q:双曲线 ﹣ =1的离心率e∈(1,2).若¬q与p∧q均为假命题,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,则每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.
(Ⅰ)若商店一天购进该商品10件,求当天的利润y(单位:元)关于当天需求量n(单位:件,n∈N)的函数解析式;
(Ⅱ)商店记录了50天该商品的日需求量(单位:件),整理得下表:
日需求量n | 8 | 9 | 10 | 11 | 12 |
频数 | 10 | 10 | 15 | 10 | 5 |
①假设该店在这50天内每天购进10件该商品,求这50天的日利润(单位:元)的平均数;
②若该店一天购进10件该商品,记“当天的利润在区间”为事件A,求P(A)的估计值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】微信已成为人们常用的社交软件,“微信运动”是微信里由腾讯开发的一个类似计步数据库的公众账号.手机用户可以通过关注“微信运动”公众号查看自己每天行走的步数,同时也可以和好友进行运动量的或点赞.现从小明的微信朋友圈内随机选取了40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下表:
步数 性别 | 02000 | 20015000 | 50018000 | 800110000 | >10000 |
男 | 1 | 2 | 4 | 7 | 6 |
女 | 0 | 3 | 9 | 6 | 2 |
若某人一天的走路步数超过8000步被系统评定为“积极型”,否则被系统评定为“懈怠型”.
(1)利用样本估计总体的思想,试估计小明的所有微信好友中每日走路步数超过10000步的概率;
(2)根据题意完成下面的列联表,并据此判断能否有90%的把握认为“评定类型”与“性别”有关?
积极型 | 懈怠型 | 总计 | |
男 | |||
女 | |||
总计 |
附:
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com